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I.  Introduction

Over the past decade object-oriented technology emerged as

a force for improved software quality and productivity.  During

that same decade, continued improvement in processor and memory

price-performance increased the availability of computers,

encouraged the deployment of networks, and enabled the

construction of massively-parallel, compute engines.

Unfortunately, most object-oriented technology that has reached

the market assumes that objects will be linked into sequential

programs, sharing the same address space.  This mismatch between

currently available object-oriented software techniques and a

growing base of multiprocessors and computer networks has

created an interesting area of research: concurrent and

distributed object-oriented approaches.

This paper: 1) surveys a number of approaches taken by

researchers, 2) proposes a taxonomy of issues in concurrent and

distributed objects, and 3) examines one specific issue in some

depth.  The specific issue examined is the utility of abstract

data types, as represented by Eiffel classes, to describe an

abstract specification for a distributed, peer-to-peer,

communications service (the Open Systems Interconnection (OSI),

connection-oriented, transport service33).

The earliest work on concurrent objects developed a class

of approaches called actor models.  The two most prominent

1



examples are Actors1 and An object-Based Concurrent computational

Model 1 (ABCM/1).70  These models, evolving from work on

artificial intelligence, define significant computational

elements as objects that have their own thread of control (there

are exceptions for some fundamental objects).  The primary

target for these approaches is highly parallel, multiprocessors.

A second, distinct class of approaches could be called

distributed models.28,47,59,60  These models assume that objects are

deployed in loosely coupled networks, possibly with a wide

geographic distribution.  These models are interesting because

distribution introduces a second level of concerns, piled atop

the usual problems of concurrency.  A third class of approaches

can be named extensions to existing object-oriented

languages.27,31,52  These approaches are worth considering because

they start with an existing model of sequential, object-oriented

programming and then extend that model to include concurrency

features.  A fourth set of approaches can be grouped together

under a category labelled other.8,13,25,39,55  These miscellaneous

approaches are worth considering because each provides a set of

features aimed at specific issues that are not addressed in

other approaches.

The second part of this paper proposes a taxonomy of issues

in concurrent and distributed objects.  The initial split of the

taxonomy separates concurrency issues from distribution issues.

Distribution implies concurrency; thus, having considered the

problems that arise when objects execute concurrently,

introducing distribution imposes an additional set of

difficulties.  Guidance is available in the literature on

general issues of concurrency7 and some researchers have proposed

a taxonomy of issues for distributed computer systems,49 but we

attempt to provide a comprehensive discussion of both

concurrency and distribution issues in an object-oriented

context.  The major concurrency topics considered include:
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granularity of parallelism; method of communication; method of

synchronization; approach to atomicity; the object life model;

the knowledge sharing model; and the exception model.  The major

distribution issues discussed include:  model of cooperation;

model of migration; method of encapsulation; means of naming,

addressing, and locating; heterogeneity; replication; and

security.

The third part of this paper presents a case study on a

specific issue:  the utility of Eiffel classes for specifying an

abstract service across distributed objects that provide a peer-

to-peer, connection-oriented, data transport service.  Two

approaches are presented, analyzed, and evaluated.  The first

approach maps the natural language OSI transport service

specification33 onto abstract data types (ADTs) represented as

Eiffel deferred classes.  This requires establishing a model for

interaction between users of the transport service and a service

provider.  The service provider, in an implementation, consists

of objects that are distributed between two nodes in a network.

This creates some interesting issues when applying Eiffel pre-

and post-assertions to specify the service provided to users.

The second approach rearranges the model into a more

realistic programmer’s view that attempts to describe the

abstract service interface as an application programming

interface.  The rearrangement is accomplished without

introducing semantic changes into the OSI transport service.

The purpose of this second approach is to determine if the OSI

transport service can be represented as an application

programming interface (API) specified in Eiffel.  Both the ADT

and API approaches are evaluated, and a general evaluation is

also presented regarding the utility of Eiffel assertions for

specifying abstract service interfaces to distributed,

peer-to-peer, communications protocols.
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The paper closes with some general conclusions about issues

of concurrency and distribution in object-oriented systems.  A

list of references and related papers follows the concluding

section.  Two appendices are provided.  Appendix A contains an

Eiffel Abstract Specification of IS 8072: The

Connection-oriented Transport Service.  Appendix B contains an

Eiffel Abstract Specification of an Adapted, Programmer’s Model

of the Connection-oriented Transport Service. 

II.  Concurrent and Distributed Object Models

A growing trend toward multiprocessing and computer network

deployment has stimulated research on issues of concurrency and

distribution.  In fact, object-oriented paradigms, traditionally

synchronous and sequential in nature, must be updated to account

for requirements of concurrent operation and geographic

distribution.  Although no consensus exists on the best means to

incorporate concurrency and distribution into object-oriented

paradigms, researchers have proposed a number of models.  In

this section, we survey some of the proposed models.  Our survey

is organized into four categories:  1) actor models, 2)

distributed models, 3) object-oriented language extensions, and

4) other models.

A. Actor Models

The original actor model was proposed by Hewitt3, formalized

by Agha1,5, and implemented as a series of actor languages.2,36,44  A

second actor model, An object-Based Concurrent computational

Model 1 (ABCM/1), was developed by Yonezawa70 and implemented as

An object-Based Concurrent Language 1 (ABCL/1).65,68,69  We describe

each of these models, and the associated languages, in turn.
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Actors.  The Actors Model of distributed computation, as

formalized by Agha, aims to define the minimal set of concepts

necessary for distributed computation in massively concurrent

architectures.  An Actor encompasses an independently executing

thread of control that processes one incoming message by

performing one or more of three operations:  1) sending messages

to other Actors, 2) creating a replacement behavior to process

the next message received by the Actor, and 3) creating

additional Actors.  The behavior of an Actor can be history

sensitive; the actions taken by an Actor cannot be presumed

sequential.  Actor creation is a primary part of the

computational model because computations are made increasing

concurrent by assigning parts of a problem to individual Actors.

All communications between Actors use asynchronous,

buffered message passing.  This uniform communication model

permits an Actor to send messages to itself without fear of

deadlock.  The arrival order of messages into an Actor’s queue

is assumed to be arbitrary, so messages arriving at a queue

simultaneously are placed into the queue in fair, but

unpredictable order.  In addition, the Actor Model assumes that

all messages sent will be delivered eventually.

Computation among a system of Actors is performed in

response to messages, synonymous with tasks, sent to the system.

Each task consists of three components:  1) a tag that uniquely

identifies the task within the Actor system, 2) a target which
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is the mail address to which the message is to be delivered, and

3) a message identifying the operation to be performed by the

target Actor and specifying any parameters needed.  To send a

task to an Actor, the mail address of the target must be known

by the sender. As computation proceeds, new Actors are created

within the system, as well as new tasks.  As tasks are completed

and Actors are no longer needed, garbage collection removes

them.

Each Actor is described by specifying a behavior and a mail

address for the Actor.  The Actor Model is illustrated in Figure

II-1.

An Actor, Xn, is shown accepting a message, n, creating a task

for another Actor (not shown in the figure but already known to

Xn), creating another Actor, Y1, and specifying a replacement

behavior for itself, Xn+1, to process the next message, n+1.

All control in the Actor Model results from message passing.

To implement the Actor Model, Agha defined two languages: a

procedural language, called a Simple Actor Language (SAL), and a

message-passing language, named Act.  SAL is intended as a

teaching tool, while Act provides a kernel, or minimal, actor

language upon which richer languages, such as Act3, can be

built.  In both SAL and Act, the same facilities are provided.

The most fundamental semantic in an actor language attaches

an identifier to a behavior definition.  Within a behavior

definition, is an acquaintance list (the mail addresses of other

Actors known to this behavior) and a list of messages that the

Actor can process.  Incoming messages are bound to a specific

set of operations according to these lists.

A minimal actor language also includes primitives to create

new actors and tasks (i.e., send messages) and to identify

internal actors, called receptionists, to be known outside of

the actor system, and to declare actors, called external actors,

that are known from outside of the actor system.
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The final set of constructs needed in a minimal actor

language include a become command, to specify a replacement

behavior, and some conditional statements (if-then-else and case

forms).  Whenever an actor fails to specify a replacement

behavior, the default replacement behavior is identical to that

of the actor.

Within a minimal actor language, there are three types of

actors: serialized, immutable, and built-in.  Serialized actors

are sensitive to history and, thus, specification of a

replacement behavior must be delayed until the relevant state

changes have been made within the actor.  Immutable actors are

stateless and, thus, need not specify a replacement behavior.

Built-in actors can perform their behavior without passing any

messages and, thus, prevent the message passing between actors

from becoming infinite.  More powerful constructs (for variable

function signatures, for delegation, for sequential composition,

and for delayed and eager evaluation), not included in a minimal

actor language, may be built from the minimal language and then

presented in more abstract form as part of a higher level actor

language.

In summary, the Actors Model, and related actor kernel

languages, define a minimal set of operations that enable  a

diverse set of computations to be carried out concurrently.

Since each function is an actor, the processing overhead in
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actor systems can be quite large, unless a method exists to

provide extremely light-weight processing and fast message

passing.  The assumptions about guaranteed delivery of messages

could place an impossible burden on a communications system,

especially if the individual actors were distributed in a large

communications network.  The Actors Model is theoretically

interesting, but the practicality of actors as an implementation

method for distributed systems is questionable.

ABCM/1 and ABCL/1.  The ABCM/1 model encompasses the

concept of objects and the interactions between them.  Each

object possesses its own thread of control (i.e., is an active

object or actor), encapsulates a set of methods that can be

invoked by arriving messages, and contains, optionally, local

variables that persist across invocations of the object’s

methods.  Each method within an ABCM/1 object comprises a set of

operations that may include any of the following:  1) send a

message to another object, 2) create another object, and 3)

access and alter local variables.  The methods that can be

invoked within an object, at a given point in time, depend upon

the messages that an object can accept.  In turn, the messages

that an object can accept depend upon the message patterns, the

parameter values within a message, and the current state of the

object.  Figure II-2 gives a simple view of an ABCM/1 object.

An ABCM/1 object is always in one of three states: 1)

dormant (awaiting a message), 2) active (a message has arrived

that matches a message pattern, including any constraints, in

the object), or 3) waiting (the object is waiting on a reply

from another object before continuing).  If an arriving message

satisfies more than one message pattern/constraint pair, then

the first pair (from the beginning of the script) that is

matched will be invoked, i.e., there is no nondeterminism.

Objects with local memory are serialized, i.e., only one message

can be processed at a time.
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Each object is assumed to own an infinite input queue, but

the management rules for that queue are rather unusual.  For

example, a dormant object examines the queue for a message that

matches a pattern-constraint pair within the object. The first

such message is processed and all messages that were in the

queue ahead of the accepted message are discarded.  On the other

hand, when the object is in waiting mode, the first message

matching any of the awaited pattern-constraint pairs that

arrives in the queue is received immediately, but no messages

are discarded.

The message passing model within ABCM/1 plays a significant

semantic role.  All messages must identify one or more receivers

(there is no broadcast); therefore, an object must know about

other objects in order to send a message.  An object may be

created knowing about another set of objects, and may also come

to know about and forget about other objects during the course

of its life (but an object always knows about itself).  A

message can be sent by an object at any time.  Messages are

guaranteed to arrive within a finite time and will be buffered

upon reception until an object is prepared to process them.  The

incoming messages are queued in the order in which they arrive.

Any messages sent from an object A to an object B are guaranteed

to arrive in the same order in which they were sent. (This is,

of course, an assumption that cannot be met by most computer

networks without appropriate protocols.  If these protocols are

not provided in the network, then the ABCM/1 model would become

very cumbersome.)

Messages sent between ABCM/1 objects are of three types:

1) past, 2) now, and 3) future.  Past messages are simply

asynchronous datagrams, the sender can continue processing after

sending a past message.  Now messages are synchronous procedure

calls, the sender must wait for a reply after sending a now

message. (For obvious reasons, an object cannot send a now
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message to itself.)  Future messages are asynchronous datagrams

that require a reply sometime in the future, but the sender of a

future message can continue processing.  The reply to a future

message is stored within a future variable until the sender of

the future message is ready to access the reply.  If the sender

of the future message attempts to access the reply before it has

been produced, then the sender must wait for the reply.

An interesting and useful addition, over and above the

actor model defined by Hewitt, provided by ABCM/1 is the concept

of express mode and express messages.  Messages that are sent in

express mode will interrupt the processing of the receiving

object.  (Only one level of priority is supported, i.e.,

interrupt processing cannot be interrupted.)  ABCM/1 provides

rules that specify when interrupts can be honored.  In general,

interrupts are not accepted while an object is accessing local

variables, nor when an object is executing an atomic block (a

sequence of actions designated as atomic by the programmer).

Further, the programmer can specify whether normal processing

will be aborted or resumed after an interrupt is received.  Each

type of message may be sent as either a normal or express

message, leading to the following combinations.

NORMAL EXPRESS

Past [T <= M] [T <<= M]

Now [T <== M] [T <<== M]

Future [T <= M $ x] [T <<= M $ x]

These message types are expressed in the syntax of ABCL/1.  In

each case, a message, M, is sent to an object, T.  An express

message is designated by a double arrow, <<.  A past message is

designated by a single equal sign, =. A now message is
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designated by a double equal sign, ==.  A future message is

designated by a bound (with the $) variable, x.

The ABCL/1 language that implements the ABCM/1 model does

not attempt to represent every concept as an object (as, for

example, Smalltalk does), but includes constructs from Lisp.

ABCL/1 does, however, embody some key features for parallelism

and synchronization.  ABCL/1 objects operate concurrently, so,

for example, if an object sends multiple messages to different

receiving objects, the processing among the receivers will

overlap in time.  ABCL/1 also permits an object to send multiple

messages in parallel and to multicast messages simultaneously to

a group of objects.  Regarding synchronization, ABCL/1 provides

a number of mechanisms: 1) serial execution of actions related

to a received message, 2) a wait-for mode that requires an

object to suspend processing until an acceptable message is

received, and 3) now and future messages.

In summary, ABCM/1 and ABCL/1 provide a practical

refinement to the actor model of Hewitt and Agha.  ABCM/1

provides a rich semantics for message passing, synchronization,

and parallelism.  The addition of express mode messages, and the

associated interrupt processing capabilities, is extremely

useful in real systems.  The inclusion of provisions for

atomicity yields a programmer-controlled mutual exclusion

mechanism.  The addition of language constructs from a

procedural programming language enable active objects to be

reserved for significant concepts within an application,

although the simplicity and elegance of the actor model is lost.

B. Distributed Models

Distributed models assume that objects, each encapsulating

some significant service, are distributed around a

loosely-coupled network of computing nodes.  Sometimes, the
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nodes are assumed to be heterogeneous, sometimes homogeneous.

We survey four particular models: 1) ARGUS, 2) the Common Object

Request Broker Architecture (CORBA), 3) the Manager Model, and

4) the Chorus Object-Oriented Layer (COOL).

ARGUS.  ARGUS is an integrated programming language and

system model proposed by Liskov when she was at MIT.46,47  The main

focus of ARGUS is provision of reliable, distributed

transactions within a network of computation servers.  The

assumptions made within the ARGUS model are:  1) the network and

the connected computer nodes may be unreliable, but all failures

can be detected and 2) the time required to send messages

between nodes is long, relative to the time needed to access

local memory within a node.  ARGUS was designed to meet the

following requirements:  1) enable a system to provide reliable,

continuous service in the face of node and network failures, 2)

facilitate logical and physical changes dynamically while the

system continues to operate correctly, 3) permit each node to be

managed autonomously of every other node in the system, 4) allow

the programmer to control the allocation of modules to nodes, 5)

increase processing performance through concurrency, and 6)

maintain consistency among the distributed data.

To accommodate these requirements, ARGUS models activities

as distributed transactions that are atomic and recoverable.

Each transaction will complete totally or will be aborted

totally (i.e., the system state will remain consistent).  Each

transaction is guaranteed to appear to be serial with regard to

other transactions.

Nodes in ARGUS communicate through messages, each of which

comprise a paired send and reply.  The ARGUS model provides only

a remote procedure call, with at-most-once semantics (each

message is received and acted upon once, or never received, but

the sender is apprised of non-receipt.)  Liskov argues that this

model of message passing allows the communication system to mask
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all the details of protocol processing from the application

programmer, while giving the programmer exactly the guarantees

and information needed to cope with failures.  Of course, stop

and wait approaches can lead to deadlocks, but ARGUS ignores

such possibilities, assuming that a human user will abort a

given transaction should the waiting time become excessive.

The architecture of ARGUS relies on a distributed set of

guardians.  A guardian, encapsulating processes and data,

controls access to some resources by checking access rights and

by synchronizing concurrent accesses.  Processes within a

guardian can communicate through shared data, while processes in

different guardians can communicate only via messages.

Guardians maintain two copies of their data: one in memory and

one on secondary storage.  The secondary storage shadows the

guardian’s primary memory, allowing the guardian to resume from

the point of interruption after a node failure.

In summary, ARGUS supports distributed services by

encapsulating processes and data, by synchronizing access to the

processes and data, and by recovering from the point of

interruption after a node, on which guardian processes execute,

has failed.  Multiple guardians can cooperate via synchronous

message passing to accomplish application objectives.

Common Object Request Broker Architecture (CORBA).  The

CORBA defines a framework for linking together client and server

objects distributed around a computer network.9,35,59  A

fundamental assumption of CORBA is that the client objects may

be developed independently by various companies, may exhibit

different interfaces, and may be implemented in an assortment of

programming languages.  To accommodate these assumptions, CORBA

comprises a number of components, some are illustrated in Figure

II-4.

 The CORBA components shown in Figure II-4 indicate how

client and server object implementations are integrated.  The
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use of both client stubs and dynamic invocations reflects a lack

of consensus in the vendor community. (CORBA is a standard

architecture being developed on behalf of the computer industry

by the Object Management Group (OMG).)  One point of view (the

static approach) requires that a remote procedure call (RPC)

stub be implemented for each method supported by an object.

Invocations of the methods then go to the client stubs, from

there to the object request broker, or ORB, (the ORB is a

component of the ORB Core), onto the appropriate object

implementation skeleton and object adapter, where the method is

performed.  The competing point of view (the dynamic approach)

permits calls on methods to have a varied signature.  The

initial run-time call goes to the dynamic invocation library

where the invariant parts of a call are linked to the run-time

parameters, from there the path converges with the static

approach.

CORBA, as it stands today, does not provide a complete

environment for distributed object management (DOM); however, a

complete architecture is being specified.  In a DOM, every

element in a distributed system (e.g., applications, databases,

files, batch scripts, and protocols) is modeled as an object.

This modeling is accomplished by describing the interface to

each object.  Objects can then pass messages among themselves to

request and fulfill services.  The CORBA, to be a DOM, must

provide means to: find a satisfactory object, compose service

request messages, and bind methods to objects.  To accomplish

these objectives, CORBA calls for eight components:
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an object model,

the ORB Core,

an interface definition language (IDL),

a dynamic invocation interface,

a static invocation interface,

an interface repository,

an object adapter, and

object implementations.

Some of these components have already been explained, but others

deserve discussion.

The CORBA object model is a conventional object-oriented

paradigm that includes: objects, requests (or messages or method

invocations), types, an object interface, operations, and

attributes.  Perhaps the CORBA object model is better viewed

through the lens of prohibited concepts.  CORBA does not allow

object aggregation or inheritance, does not define how objects

can be linked at run-time, does not address creating, copying,

and managing objects, does not include exception handling, and

does not enforce object operations as atomic transactions.

(These are some major shortcomings.)

The ORB Core comprises a proprietary implementation of

functions for object location, message delivery, and method

binding.  The proprietary nature of the ORB Core is a major

deficiency of CORBA as a standard.  CORBA allows software

vendors to create clients that can be moved from one vendor’s

environment to another’s, but the request brokers of different

vendors cannot necessarily work together in a heterogeneous

network of ORBs that can find and invoke object operations

throughout a network.

The interface description language allows an existing

application interface to be described in terms that can be used

to compile a mapping between CORBA interfaces and the
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application interface.  This permits existing applications to be

integrated into a network of ORBs without being rewritten.

In summary, CORBA defines an architecture for portability

of client objects among server objects implemented by a variety

of vendors.  While CORBA is extensible, its failure to address

some key features of the object-oriented paradigm, coupled with

the current proprietary nature of the ORB Core leave many issues

open and requirements unsatisfied.

The Manager Model.  The Manager Model distributes a set of

Managers across a network of computing nodes.60,61  These Managers

can cooperate to perform functions through transparent

operations (TOP).  A TOP allows a Manager to invoke an operation

(via a request) on and receive a result (via a reply) from

another Manager in a universe of interconnected, heterogeneous

nodes.

The Manager Model guarantees three desirable

transparencies:  addressing, distance, and data representation.

Addressing transparency is provided through a uniform, logical

name space, coupled to a name service that resolves the specific

address of each Manager.  Distance transparency is provided by a

mapping function that invokes the appropriate communication

mechanism depending on where the destination Manager is located.

Data representation transparency is provided by defining

interfaces using Abstract Syntax Notation 1 (ASN.1) and by using

appropriate encoders and decoders for each ASN.1 interface

defined.

When a Manager cannot complete a request, the operation may

be delegated to another Manager. Managers may be related through

creation or through service, the service relationship has two

forms: client-server and superior-subordinate (the

superior-subordinate relationship generally follows the Manager

creation tree).
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Three forms of cooperation are incorporated in the Manager

Model.  Client-server cooperation allows one Manager to invoke

services from another Manager.  Peer-to-peer cooperation enables

two Managers to invoke services from each other to support an

application.  Cooperative processing involves a Manager that is

conducting operations with multiple Managers simultaneously to

support an application.

While a Manager appears to be a single entity when viewed

from the outside, internally a Manager is composed of a

collection of Workers.  Workers, the unit of concurrency in the

Manager Model, provide the active threads of control for a

Manager.  Thus, when a request is received, a Coordinator Worker

can create a Server Worker and assign the request.  The internal

behavior of each Worker is specified via a structured finite

state machine (SFSM).  SFSMs permit behavior to be specified

through a hierarchy of FSMs.  Some Workers may comprise a single

state (i.e., are stateless) and, thus, accept any operation at

any time.

Each Worker in a distributed system of Managers is an

instance of a Worker Class.  The model supports multiple

inheritance.  Operations between Workers can be invoked

synchronously or asynchronously.

In summary, the Manager Model goes further than the

existing CORBA to define and implement a distributed,

object-oriented model.  The flexibility of the Manager Model is

greater than that of ARGUS.  The Manager Model accommodates

heterogeneity by relying on industry standard protocols to

provide communications.  The Manager Model insulates the

application program from issues of communication diversity and

computing environment variability.

Chorus Object-Oriented Layer (COOL).  COOL was implemented

to evaluate the feasibility of managing objects via kernel

functions atop which multiple object models can be mapped.28  
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Chorus is a distributed operating system nucleus that permits

the inclusion of subsystems.  Subsystems run within the nucleus

address space and are accessed through system calls.

One Chorus nucleus runs on each network node.  The node

nucleus manages the operation of actors; actors are analogous to

processes in UNIX, except that each actor can support multiple

threads of control.  Threads within an actor can communicate

using shared memory, but communication between actors requires

message passing.  Chorus supports both synchronous and

asynchronous message passing.  Messages are passed, transparent

to the location of the actors, across ports between actors.

Chorus also supports multicasting message passing and a global

space of unique identifiers.

COOL is layered on top of Chorus as a subsystem in the

nucleus.  COOL embodies a set of object managers, one per node,

that handle object creation, copying, deletion, communication,

and migration.  COOL provides an object name server that

integrates into the UNIX file naming hierarchy.  Objects may be

declared as globally known or locally known.  The intent of COOL

is to support the mapping of distribution and concurrency

functions onto existing object-oriented languages, such as C++.

In summary, COOL lays an object management model atop a

distributed operating system kernel (Chorus) to facilitate

mapping concurrent and distributed object functions onto

existing object-oriented languages.  COOL assumes a homogeneous

network.  COOL does not provide an object location facility.

The COOL model breaks down as the granularity of the objects

decreases.

C. Object-Oriented Language Extensions

Some proposals for concurrency among objects start with an

existing object-oriented language and introduce constructs,
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including syntax and semantics, that extend the language to

provide active objects and synchronization mechanisms.  Here we

survey three such proposals.  One proposal specifies additions,

previously developed for C, to C++ that introduce concurrency

functions.  A second proposal describes mechanisms for

supporting real-time requirements by adding language features to

C++.  The final proposal adds concurrency to Eiffel.

Concurrent C++.  Two orthogonal extensions to the C

programming language were developed at Bell Labs during the

second half of the 1980’s: one extension, C++, incorporated

object-oriented features into C, the other extension, Concurrent

C, incorporated concurrency features into C.  Researchers at

Bell Labs are now combining these extensions to form Concurrent

C++.27

Concurrent C introduces the concept of processes that can

execute in parallel and that can communicate between each other

using synchronous and asynchronous message passing.  Concurrent

C++ adds: 1) potential to encapsulate interfaces to processes

within classes and to represent messages as classes and 2)

invocation of constructors and destructors at process creation

and termination.  Objects that are shared by multiple processes

can be encapsulated in a guard process.

At the time the referenced report was written a number of

integration issues, mainly relating to keeping the flavor of C++

while adding concurrency features, were unresolved.  For

example, passing references to objects between processes is not

possible, so a method of object reference between processes must

be devised.  As another example, although deriving one process

from another using C++ inheritance is desirable, unfortunately

this seems to be impossible.  In fact, merging classes and

processes into a unified concept, a natural approach in many

concurrent object languages, was still being investigated for

C++.  As a final example, object methods in C++ can be
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overloaded, but no decision had yet been made about overloading

messages, the concurrent counterpart to method invocations,

passed between processes.

In summary, the effort at Bell Labs to combine concurrency

into C++ illustrates a drawback common to all language extension

approaches:  new features must be added in a manner that

preserves the existing semantic model of the language.  This

requirement limits technical options for adding concurrency.

RTC++.  RTC++ extends C++ to include: 1) active objects, 2)

optional specification of timing constraints on methods and even

individual statements, and 3) optional specification of periodic

tasks with hard timing.  RTC++ also includes language mechanisms

to avoid priority inversion and to allow inheritance among

active objects.  RTC++ allows concurrent execution among the

methods in an active object, but each method may, itself, only

be executed serially, i.e., by one thread at a time.

Active objects in RTC++ are declared as active classes.  By

default, an active object has one thread of control, but

multiple threads of control can be specified.  Threads may be

slave threads, invoked by a method request, or master threads,

executing independently in the background.  When a slave thread

is invoked, the slave inherits the priority of the caller; this

avoids the priority inversion problem.  If so specified, slave

threads may be interrupted when a method is invoked by a higher

priority thread; however, if the interrupted thread is executing

in a critical region, the interrupted thread will continue

execution until it exits the critical region.

RTC++ introduces a guard expression that can delay

execution of a method until a specific condition is met.  A

guard expression may include specification of a function to be

executed if the condition is not met.  Guard expressions are

also used to implement critical regions.
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All message communication in RTC++ is synchronous.  Replies

can be sent by two mechanisms: 1) return statement (the reply is

sent and the remote procedure terminates) or 2) reply statement

(the reply is sent and the remote process continues execution).

RTC++ provides mechanisms to catch and handle exceptions

from an object, from a thread, or from a kernel.  Language

constructs also allow protected regions to be declared;

exceptions are not permitted while a protected region is being

executed.

RTC++ includes are number of timing facilities.  Each RTC++

method may be augmented with a deadline and a specification of

the function to invoke if the deadline is not met.  Individual

RTC++ statements may be augmented with timing constraints:

execute within, at, or before a specified time.  For master

threads, timing cycles can be specified: start cycling at a

specific time, terminate cycling at a specific time, execute

with a designated periodicity while cycling, complete within a

specified time during each execution.

In summary, RTC++ exhibits two faces: an object-oriented

concurrent language and a real-time language.  RTC++ adds the

concept of active class to the usual concept of a C++ class.

RTC++ supports only synchronous communication.  In many ways,

the specification of RTC++ appears superior to Concurrent C++ as

proposed by Bell Labs researchers.

Eiffel Concurrency.  Meyer proposes to introduce

concurrency into Eiffel in a fashion that matches the style of

the language very well and that requires (the more pessimistic

might choose the word "allows") no explicit programmer control

of concurrency, except specification of which Eiffel objects can

be executed concurrently.52  Meyer starts from two assumptions:

1) a concurrency mechanism should change sequential Eiffel as

little as possible and 2) a concurrency mechanism must be
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compatible with the Eiffel assertion mechanisms.  These

assumptions constrain Meyer’s solution space.

Meyer introduces the key word separate as a qualifier that

can be applied to Eiffel object declarations.  An object

declared as separate, we will call them active objects, may

execute on its own (logical) processor.  Meyer overloads the

semantics of method preconditions such that, for active objects,

evaluation of a precondition that is not satisfied means that

the client (operation caller) cannot be served until the

precondition is meant.  Therefore, when an active object

provides the service, an unsatisfied precondition does not cause

an exception, rather the server is blocked until the

precondition becomes true.  Within the client, results from an

active object may be assigned to another object declared active

(and of a type that conforms in the Eiffel sense).

After a client invokes an operation, A, in an active

object, the client can continue concurrently unless the client

attempts to perform an operation the requires A to have been

completed.  If A must be completed for the client to continue,

the client waits implicitly.     

Meyer defines concurrency granularity to be at the level of

operations.  No operation may be interrupted, so each operation

invocation is atomic.  Meyer does envision library routines that

can halt, under programmer control, execution of an operation.

Of course, Meyer also foresees operations that can block

interruption of an operation, in which case an Eiffel exception

would be raised should an operation be interrupted.

In summary, the Eiffel concurrency scheme defined by Meyer

is simple and elegant, relieving the programmer from most

burdens usually associated with concurrent programming.  (Of

course, sometimes, the programmer can benefit from control

levers, such as those defined in RTC++.)  The scheme proposed by

Meyer appears susceptible to deadlocks.63    Meyer seems to have
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swept most issues dealing with communications among active

objects out of the language and into run-time libraries.  We see

no clear path from Meyer’s concurrent Eiffel to a distributed

Eiffel, except by making distribution conceptually transparent

to the programmer.

D.  Other Models

Many researchers are investigating models for concurrent

and distributed objects.  Some models concentrate on specific

issues, and, so, are not easily classified.  In this section, we

survey five such models: 1) Trellis/Owl, 2) Emerald, 3) Hybrid,

4) Ellie, and 5) MELD.  We chose these models because they each

emphasized some significant issues relating to concurrency among

and distribution of objects.  Difference in emphasis leads to

diversity in approach.

Trellis/Owl. The Trellis/Owl, hereafter Trellis, Language

supports concurrency at the level of method invocations.53  The

intent of Trellis is to support moderate- to large-grained

parallelism, where concurrency exists among logically separate

tasks invoked independently by users.  A given task can create

new, subordinate tasks and can wait for subordinate tasks to

terminate.  Each task terminates with either a normal return or

an exception.  A task cannot be aborted, even by its parent

task.

Trellis provides basic facilities for concurrent tasks to

access shared objects, but the burden for managing that access

falls on the programmer.  Locks are implemented for mutual

exclusion.  Tasks attempting to reacquire locks are given

priority over tasks that are attempting to acquire the lock for

the first time.  Reacquirers of a lock are ordered in accordance

with the time they were awakened; this helps to prevent

deadlocks.  Wait queues are implemented for inter-task signaling
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and for waiting on such signals.  A task awaiting a signal may

specify a time after which the task will be awakened if no

signal is received.

Tasks can be interrupted, or swapped to disk, except when

they are executing in a critical section, such as stack creation

or deletion, calls to the run-time system, or initialization of

global variables.  All language-provided functions that operate

on locks and queues are atomic.

In summary, Trellis defines an environment where multiple

tasks can execute concurrently, but where little concurrency is

supported within a task.  The Trellis Language, and its

associated run-time system, provides a sufficient set of

constructs to control mutual exclusion and synchronization among

concurrent tasks.  The programmer must manage these mechanisms.

Emerald.  Emerald is an object-oriented language and

run-time system designed expressly to support the needs of

distributed object systems.13   Emerald introduces object

location and mobility as explicit features.  Objects can move

between nodes at any time and can be invoked regardless of

location.  An Emerald object comprises an identity, a

representation, and a set of operations.  An object may be a

process with an independent thread of control, or may be

passive, executing only when invoked.  Emerald objects have an

explicit location attribute.  Objects declared to be immutable

can be replicated within the system of objects, allowing remote

references to be resolved by object copying.

Emerald supports concurrency between and within objects.  A

process object has its own internal thread of control that is

initiated upon object creation.  At any time, multiple processes

may be executing within a single object as a result of

invocation of the object’s methods by different processes.  To

permit mutual exclusion, objects can contain monitor sections,
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i.e., sections where methods and variables are guarded by

conditions.

Although all Emerald objects share the same conceptual

model, three different implementations of that model exist.

Standard types, such as integer, are implemented as a memory

location, coupled with in-line operations.  Objects contained

within another object are implemented as compiler-allocated

memory with the operations represented as procedure calls.

Objects that can move around the distributed system and that can

be remotely referenced by other objects are implemented in

kernel-allocated data space.  References to these objects are

made via an object table.

Invoking objects remotely in the Emerald system can lead to

some interesting effects.  For example, parameters may be passed

to a remote object by copying them.  Unless the objects passed

are immutable, the location of the object must be updated

throughout the system.  As a second example, an object may be

moved to a remote node so that operations on objects at the

remote node can be called locally.  Of course, a programmer can

explicitly request that specific objects be moved at any time.

This scheme requires a global accounting of all objects and

probably does not scale to large, distributed systems.

In summary, Emerald was designed specifically for

distributed object systems.  Objects can be invoked without

regard to their location.  The Emerald run-time system attempts

to move objects around to most efficiently perform remote

invocations.  Programmers may also specifically move objects

among nodes in the system.  Emerald probably does not scale up

to global, distributed systems.

Hybrid.  Hybrid is an object-oriented programming

language.55  Hybrid objects can be either passive or active.

Active objects communicate through remote procedure calls which

always represent a transfer of control, or creation of a new

25



control thread, called an activity.  Objects are organized into

domains, i.e., processes.  Multiple activities may execute

within a domain.

Hybrid allows (forces) the programmer to establish the

granularity of concurrency by defining each domain (true

concurrency occurs only between domains).  A domain serializes

access to operations on objects within the domain.  Activities

represent the threads of control that can either:  be executing

in a domain or waiting on a queue.

In Hybrid, calls to operations may be delayed.  Each

operation can be associated with a delay queue that can be

opened and closed by operations on the object.  Each object will

serve requests previously delayed before honoring newly arriving

requests. (Operations without a delay queue are modeled as

owning permanently open delay queues.)  Delay queues serialize

access to operations in an object; increased concurrency can be

achieved through delegation.

Hybrid contains a delegate construct which can bracket an

expression.  Expressions within a delegate bracket can be

executed asynchronously.  When an object delegates a call, the

calling object can proceed in parallel with the called

object(s).  Delegation can be used together with delay queues to

implement constraints or invariants.

Hybrid permits even greater concurrency through the coloop

and coblock constructs.  Within these constructs new activities

can be started and can then execute concurrently; the initiating

object must wait until the newly created concurrent activities

have completed before proceeding.

Mutual exclusion is provided in Hybrid by the atomic

statement.  A group of Hybrid statements bracketed within an

atomic block may not be executed by more than one activity at a

time.
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In summary, Hybrid is a cross between an actor model and an

object-oriented language, but without inheritance.  Hybrid adds

concurrency to object-oriented systems in a practical manner

similar to ABCL/1, but Hybrid does not include features for

priority interruption.

Ellie.  Ellie is an object-oriented programming language

that allows fine-grained parallelism.8  Fine-grained in Ellie

means that the smallest operations, such as multiplication and

additions, can be implemented as parallel processes.  Ellie also

supports medium-grained (sets of operations) and coarse-grained

(units comprising a large number of operations) parallelism.

The grain size for parallel operations in a specific program is

controlled by the compiler.  The compiler will aggregate Ellie

operations into larger objects when the target computer cannot

efficiently support the fine-grained parallelism possible in

Ellie programs.

Ellie supports an object model similar to that of

Smalltalk, but Ellie objects are active processes.  Ellie

objects may either be operational (i.e., have side effects) or

functional (i.e., immutable).  Ellie provides object typing,

genericity and polymorphism, and delegation and inheritance.

Parallelism and synchronization within Ellie are achieved

by two forms of remote procedure call (RPC):  bounded and

unbounded.  Bounded RPCs are normal synchronous object method

invocation.  Unbounded RPCs assign a result to a future object

and allow the caller to continue.  Later, when the caller must

access the future object, the caller will block until the result

is available.  Ellie also includes a mechanism to synchronize

access to local variables within an object after invoking a set

of parallel operations.  Synchronization delays are handled,

transparently to the programmer, by the run-time system.

Ellie introduces a mechanism that enables objects to

dynamically alter the operations exported at their interface.
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Such a mechanism enables parallelism to be restricted or enabled

under conditions determined during program execution.

Restricting access to operations is the only means available for

a programmer to control mutual exclusion, and, thus, a

programmer must exercise great care when specifying

synchronization among fine-grained, parallel processes.

In summary, Ellie extends object-oriented concepts to

facilitate execution on massively parallel architectures.  The

Ellie compiler automatically adjusts the parallelism in a

program to account for the limitations of a target computer.

Alas, the programmer must bear the burden of ensuring correct

synchronization among the fined-grained, parallel operations

within a program.

MELD.  MELD is an object-oriented programming language that

provides encapsulated classes, multiple inheritance, and active

objects.39,40 MELD is designed to support concurrency at four  

levels:  macro data flow, methods, objects, and transactions.

MELD statements enclosed in a data flow block are ordered only

when the output of one statement is among the inputs of another;

otherwise, the statements are unordered and may execute in

parallel.  Multiple methods within an object may execute

simultaneously, but the programmer may identify atomic blocks

within an object.  MELD objects can execute concurrently via

synchronous and asynchronous message passing.  MELD also allows

transactions that cut across multiple methods and objects.

Transactions appear to execute atomically and serially with

respect to other transactions.

Within the address space of one MELD process, an arbitrary

number of threads may execute concurrently.  Each thread may

operate across multiple processes (i.e., address spaces), with

the local thread suspended until control returns from the remote

process.
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In summary, the design of MELD includes the full range of

concurrent models encountered in the other approaches we

surveyed.  Most concurrent mechanisms within MELD, specifically

data flows, object concurrency, and transactions, are controlled

by the programming language.  Concurrency among MELD object

methods requires that the programmer specify operations within

the object that must be executed atomically.

 

III.  Taxonomy of Issues in Concurrent and Distributed Objects

As concurrency is introduced into otherwise sequential

programs, a new layer of issues is introduced.  Further, because

distribution implies concurrency, introducing distribution into

a software system adds another layer of difficult issues.

Coupling concurrency and distribution with object-orientedness

can raise even more issues, not all of which are well

understood.  Below we present a taxonomy of issues regarding

concurrent and distributed objects.  Since issues related to

concurrency are a subset of the issues related to distribution,

we will begin with concurrency.  Please be aware that, while

many of the issues presented are interrelated, a taxonomy

separates issues and classifies them for purposes of exposition.

A. Concurrency

Concurrency among threads of control that must coordinate

operations raises some interesting, and for the most part well

understood, issues.  Such issues remain when an object

orientation is superimposed on concurrency (or vice versa).  An

object orientation can, however, add an interesting twist to

certain concurrency problems.  Below, we identify, classify, and

describe concurrency issues, and we introduce, where warranted,
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specific object-oriented concurrency concerns.  A quick overview

of the taxonomy is given in Figure III-1.

Granularity of Parallelism.  The granularity of parallelism

defines the limits of concurrency that can be achieved in a

particular system.  The traditional granularity for concurrency

is the process or task.  Each process has its own address space

and can access memory, the processor, and other resources in

competition with other processes.  More recently, with the

advent of several popular real-time operating systems such as

VRTX and iRMX-86, granularity has moved within the process or

task to the level of threads of control.  Threads of control

operate within the context of a process, sharing the process’

address space, but being independently scheduled within the

process.  A thread of control can be viewed as a lightweight

process.  Switching between processes normally requires saving

and loading memory management registers; switching between

threads of control within a process requires only that the

program counter and program registers be saved and loaded. 

Within active object models, objects can have their own

thread of control.  In these models, objects might or might not

share an address space with other objects.  The mapping of

objects and threads of control onto operating system resources

varies with the specific active object model and the operating

system environment.  When objects define the granularity of

parallelism, each active object can be independently scheduled,

can compete for resources, and might require synchronization

with other active objects.  When an object is state-sensitive,

access to the object must be serialized.  When an object is

immutable, access to the object may occur in parallel. 

In a restricted set of active object models, the

granularity of parallelism reduces to the level of methods.

Some models serialize access to each specific method, while

allowing parallel access among different objects.  Some models
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serialize access to state-sensitive methods, but permit

immutable methods to operate in parallel.  Other models allow

the programmer to open and close access to methods dynamically

depending on the state of the object encapsulating the methods.

A few, recently designed object languages permit

concurrency at the level of statement blocks.  Most such

languages enable the programmer to specify statement groups that

can be executed in parallel.  Some languages attempt to provide

concurrency in a programmer-transparent fashion, enforcing

statement sequence when the context requires and allowing

parallel execution when sequential execution is not required.

These languages rely on their compilers to perform the required

analysis, but still seem to require care on the part of the

programmer.

While much research into concurrent object systems aims to

reduce the level of granularity (probably to accommodate

massively parallel computing architectures), a few proposals

(intended for application in large, heterogeneous computer

networks) define concurrency at the megaobject level.

Megaobjects encapsulate sizable services (often implemented as

multiple processes, threads, or active objects), that are then

distributed around a computer network, where they can provide

remote services to a variety of clients.  The megaobject is the

level of visibility to clients in the network and, thus, defines

the apparent level of concurrency for those clients.

Communications Method.  Regardless of the granularity of

parallelism in a system, the parallel units often need to

exchange information to cooperate on a computation. Three

general communications methods are possible:  1) shared

variables, 2) message passing, and 3) remote procedure calls.

We consider each of these in turn.

Shared variables require that concurrent units, wishing to

communicate, be operating on a single processor, on a
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tightly-coupled multiprocessor, or on a multiprocessor system

with shared memory areas.  Such arrangements enable processes to

synchronize access to the same memory area where the processes

can pass signals and data values to each other.  Shared memory

is a necessary prerequisite for a variety of synchronization

schemes, such as semaphores, spin locks, monitors, and

conditional critical regions.  To accommodate distributed

systems, shared memory must be replaced by a message passing

mechanism.

Message passing comes in two general forms: synchronous,

sometimes call tightly-coupled, and asynchronous, sometimes

called loosely-coupled.  Synchronous message passing requires

that the sender of a message cannot continue after sending the

message, but instead waits until the message can be accepted by

the receiver.  Two variations of synchronous message passing

exist.  One requires the sender to wait only until the receiver

accepts the message.  The other variation requires the sender to

wait until the receiver replies to the message.  (Another common

variation allows the sender to continue unless the sending

channel is full.  This variation falls somewhere between

asynchronous and synchronous message passing.)  Synchronous

message passing models usually require that communication be

point-to-point.  Synchronous message passing implies that

message delivery is reliable, or else the sender might become

deadlocked waiting for a reply.

Asynchronous message passing disconnects the activities of

the sender from those of the receiver by supplying a queue to

buffer messages until the receiver is ready to process them.

The sender of an asynchronous message can transmit the message

and continue processing regardless of the state of the receiver.

When defining asynchronous message passing schemes three issues

must be considered.  First, the communications model must be

established.  Is each message sent to only one addressee
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(unicast), or can messages be sent to groups (multicast) or to

every addressee (broadcast)?  Is each message an unrelated

transmission, or is a reply expected for each message?

The second issue to consider when defining an asynchronous

message passing scheme is the properties that the communications

can exhibit.  Will each message between a given sender-receiver

pair be received in the sequence that it was sent?  Can messages

be loss, or are they guaranteed to be delivered eventually?  If

delivery is not guaranteed, can loss be detected?  Corrected?

Will every message be delivered as sent?  If messages can be

damaged, can the damage be detected?  Corrected?  Is every

message guaranteed to be delivered once only?  If duplicate

messages might be delivered, can they be detected?  Eliminated?

The third issue to consider when defining an asynchronous

message passing scheme is the possibility of expedited, or

express, messages.  Can certain messages be designated to

by-pass the normal communication channel between a sender and

receiver, possibly jumping ahead of previously sent, messages?

Can such expedited messages interrupt the receiver?  And, of

course for expedited messages, the issues of addressing model

and communication properties must also be considered.

Another form of message passing, the remote procedure call

(RPC), insulates the programmer from the fact that an invoked

procedure is in inside another process’ address space, and

possibly in another computer on a network.  In fact, the RPC is

a restricted form of synchronous message passing.  When a remote

procedure is called, the caller yields control, just as though

invoking a local procedure, but a library routine and kernel

function must intervene to create a message, fill in the

operation and parameters of the procedure call, and send the

message, through an RPC client, to the correct RPC server.  The

RPC server receives the message, extracts the operation and

parameters, and invokes the correct local procedure.  When the
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procedure is completed, the return call is routed through the

operating system kernel to an RPC client, where a reply is

created and returned to the correct RPC server.  The RPC server

will extract any return values and formulate a return statement,

then the waiting process will be awakened and proceed from the

point of suspension, as though the call had been to a local

procedure.

Synchronization Method.  For distributed systems, the only

means of synchronization available is synchronous message

passing or remote procedure calls; however, for general,

concurrent processing systems a full range of synchronization

methods may be built atop shared variables.  Here we consider

such shared-memory, synchronization mechanisms.

A simple, fine-grained synchronization method reserves a

single variable, called a lock, that can be shared by all

processes.  Each process waits for the lock to be false, sets

the lock to true, executes in the critical section, sets the

lock to false, and continues processing outside the critical

section.  In the simplest incarnation, processes simply spin in

a tight, busy-wait loop until they acquire the lock.  Of course,

when many processes are awaiting the same lock, a fair sharing

algorithm is required to prevent the starvation of any one

process.

Semaphores provide a more sophisticated basis for

synchronization schemes than do locks.  Locks induce

busy-waiting loops that can be very inefficient, and locks

require sometimes complex algorithms to ensure fair access.

Semaphores combine wait queues with a variable to eliminate

busy-wait polling and to provide the basis for a built-in fair

access.  The binary semaphore operates much as a lock, but

without the busy-wait polling.  A general semaphore allows the

guard variable to take on positive integer values, ordering
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processes on the wait queue to provide first-come, first-serve

access.

Conditional critical regions (CCRs) extend the

synchronization available with semaphores by providing simpler

mechanisms that are easier to program.  A named resource can be

protected by embedding it inside a region block.  Mutual

exclusion can then be guaranteed by ensuring that execution of

region blocks that name the same resource are never interleaved.

In addition, conditional synchronization can be included by

adding Boolean conditions onto the region statements.  While

CCRs are easier to program than semaphores, CCRs are also less

efficient and, thus, are not widely used in practice.  CCRs do,

however, open a pathway to another synchronization method:

monitors.

Monitors, passive guard modules, overcome the limitation

that shared variables must be global to all processes in a

system.  Monitors can provide more structure than CCRs, yet can

be implemented more efficiently than semaphores.  Monitors

encapsulate abstract resources and provide a specific set of

operations visible to other processes that wish to access the

resources.  Mutual exclusion is provided by ensuring that

execution of the operations within the same monitor do not

overlap.  In effect, the synchronization mechanisms are hidden

inside the monitor’s operations.

Another form of synchronization is the rendezvous.  The

rendezvous allows a task to await conditionally any of several

events, or operation types.  When one of the awaited events

occurs, and any associated guard condition is satisfied, the

processing associated with that event is invoked.  If more than

one of the awaited conditions is satisfied by an arriving event,

only one is chosen nondeterministically.  Sometimes, a

scheduling clause is added to remove the nondeterminism.
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All of the synchronization mechanisms we have discussed can

lead to deadlock, if the condition or event awaited never

occurs.  To avoid such problems, synchronization schemes can be

augmented with a time-out feature.  In effect, a process waits

for an event or condition, but specifies that it will only wait

for period of time.  When the period expires, the process is

awakened even though the awaited condition did not occur.

Atomicity.  To ensure consistency of shared information, a

process may require that certain operations execute atomically.

For example, on a computer, a typical machine instruction cannot

be interrupted in the middle of execution, or, in an operating

system, certain sequences of statements may execute with

interrupts disabled.  In concurrent object systems, four

approaches exist to satisfy this requirement.  One approach

serializes access to an object, so that each operation invoked

executes to completion before the next operation is accepted.  A

more liberal approach, supported in some systems, locks out only

those operations that cannot safely execute in parallel with the

current operation.  For example,  an object that is performing a

computation to return a value might accept other access

operations in parallel, but lock out access operations once an

update operation begins.  A third atomicity approach relies upon

the compiler to analyze the code and determine which regions

must be executed with exclusion and to generate appropriate

instructions that enable the run-time system to enforce mutual

exclusion where required.  A fourth approach incorporates atomic

blocks into a programming language.  The programmer must then

use these constructs to protect critical regions within the

code.

Life Model.  The life model of an object encompasses three

aspects:  birth-death, working life, and memory.  A system of

objects can be configured statically so that, when the system is

loaded into computer memory, all the necessary objects exist and
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are preconfigured.  This approach might be useful for a

real-time system with fixed capacities in memory and processing

time.  By preconfiguring a system of objects, there is no danger

of exhausting memory and the system operates without the

overhead of allocating memory and initializing objects.  More

common is a dynamic approach where all objects are created

during run-time and destroyed when they are no longer needed.

In fact, many object-oriented languages model  program execution

as creation of a root object; once the root object is completely

created, the program is terminated.  Some dynamic object systems

enable all or subset of objects to be moved to persistent

storage from which they can be recalled, state in tact, and

executed in the future.  The static approach is a restricted

form of rebirth from persistent storage, except that each birth

finds the object in the same initial state.  Rebirth of a

dynamic object system will find the objects in the same state as

when they were moved to storage.  Of course, there is no reason

that a static object system cannot be interrupted, moved to

persistent storage, reloaded, and resumed from the point of

interruption.

While executing, an object can be stateless or

state-driven.  Stateless objects are analogous to mathematical

functions.  No concurrency protection is required for stateless

objects.  State-driven objects must be executed atomically and

sequentially, unless some sophisticated scheme for concurrency

is implemented by the language, run-time system, and/or

programmer.

An object may possess persistent or transient memory.

Persistent memory enables an object to exist across program

executions, or to be restarted without loss of state after a

system crash.  Transient memory requires that each time an

object is invoked initial conditions must be established.
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Knowledge-sharing Model.  Object-oriented systems enable

new objects to be derived from existing objects by some form of

knowledge-sharing.  The usual form of knowledge-sharing in

object-oriented systems is inheritance.  When an object (child)

inherits from another object (parent), the child obtains every

attribute and feature of the parent. (A child can inherit from

multiple parents, obtaining the union of the attributes and

features of all the parents.)  The child may then rename and/or

redefine (subject to the rules applicable in the specific

language) any of the features and attributes inherited.

Another approach to knowledge-sharing, delegation, occurs

when one object knows about a proxy object.43  At run-time, an

object will delegate to its proxy operations that it does not

understand.  (This model assumes that the proxy is somehow more

general, or has more knowledge.)  If the proxy cannot understand

the message, then it can delegate it to its own proxy, and so

on.  This message forwarding occurs at run-time, much as is the

case for Smalltalk, leading to possible inefficiency when

compared with inheritance (a compile-time mechanism).

The query-recipe scheme turns delegation on its head.

Rather than delegating an unknown message, an object will ask

its proxy for the recipe, or method, to process the message.

This approach can lead to transmission of large messages.  Some

alternatives to sending the method from the proxy to the

requester exist, but, in general, these alternatives lead to

deadlock, which can be avoided only be sending many messages.17

A fourth approach to knowledge-sharing is to implement

inheritance in distributed objects by simply copying all

features and attributes from the parent to the child every time

the child is created or compiled. (Note that under normal

circumstances, where objects are in the same process, only

references to methods need be copied during inheritance.)  This

will create large objects.  Also, once the inheritance is
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copied, any changes to the parent object will not be reflected

automatically to the child.

Exception Model.  Some object-oriented models allow certain

exceptions to be caught.  In general, when a model allows

exceptions to be caught, the operation causing the exception can

be retried after some action is taken to resolve the cause of

the exception.  Some models enable exceptions to be caught, but

only so that the object can be returned to a known consistent

state; in these systems, operations causing exceptions cannot be

retried.

Whether an exception is unhandled because the programmer

chooses not to catch it, or because no retries are allowed, or

because the specific exception could not be caught, some

notification of the unhandled exception is needed.  Many object

models simply notify the caller, or message sender, that the

exception occurred.  More sophisticated models allow the

programmer to specify complaint addresses for each operation.

When an unhandled exception occurs, notification is sent to the

appropriate complaint address.  A similar approach notifies a

known proxy, specified for each object, when an unhandled

exception occurs.

B.  Distribution   

Distribution implies concurrency; thus, for a distributed

object system, all of the issues we identified, classified, and

discussed above apply.  In addition, an equally large set of

issues must be considered when a system of objects is

distributed.  These additional issues are illustrated in the

taxonomy shown in Figure III-2, and are discussed below.

Cooperation Model.  Within a distributed system,

computation is accomplished through some form of cooperation

between two or more active, independent processes.  Various
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models exist for cooperation among processes in distributed

systems.

The client-server model extends function and subroutine

calls across a computer network.  A caller, needing to access a

remote procedure, calls a local client which packages a message

and sends the message to a remote server.  The remote server

transforms the message into a local procedure call.  The return,

or reply, flows back to the original caller.  The client-server

model is easy for programmers to understand and work with, but

other models can provide more flexibility in a distributed

environment.

The peer-to-peer model treats communication between two

distributed processes as an interactive dialog.  Generally, two

processes establish a connection with each other and then

exchange data in both directions simultaneously.  Peer-to-peer

communication, similar to human conversation across a telephone

connection, is efficient when large quantities of data must be

exchanged between two processes, for example, during a file

transfer operation, or when two processes must interact quickly

over a prolonged period, for example, during a process control

application.  The peer-to-peer model, while more flexible than

the client-server approach, limits communication to two parties.

The distributed transaction model enables a process to

interact simultaneously with many other processes in a

distributed system.  A master process, responsible for

processing a transaction, can interact with many other

processes, each being delegated a portion, or subtransaction, of

the job.  The master process must ensure that either all

subtransactions are completed or that none of the

subtransactions is completed.  In effect, the master process

ensures that the transaction is atomic, consistent, indivisible,

and recoverable.  As a general approach, the distributed

transaction model is recursive, so every subtransaction may
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spawn additional subtransactions, forming a distributed

transaction tree with the initiating process at the root.

Distributed transactions are cumbersome, complex, and

inefficient, but they provide a huge increase in functionality

when compared with either the client-server or peer-to-peer

model.

Two other cooperation models are sometimes used, although

in restricted applications.  The broadcast model, where a

processes sends one message that is copied to every other

process in the distributed system, is sometimes used to

distribute global events, or to distribute information to

everyone, in the absence of an explicit destination address,

expecting the intended addressee to process the message and

others to ignore it.  Probably the most common use of broadcast,

limited to a local area network segment, is address resolution.

Address resolution is required when a message, containing a

destination name, arrives from outside a local network.  The

receiving node, if the destination name is unknown, will

broadcast a small message on the local area network asking:

"Does anyone recognize this destination name?"  If a specific

node recognizes the name, the node replies: "Send any messages

for the destination name to this address."  Because the

broadcast model does not require a reply, broadcast messages

need not arrive at every destination.  In the context of

wide-area networks, broadcast operations are expensive, so

practical use of the broadcast model is limited to local

networks.  A similar, but more efficient, multicast model can be

applied outside of local networks.

The multicast model enables groups of processes to be

formed and then labeled with a group, or multicast, address.

Whenever a message is sent to the group address, everyone in the

group will be given a copy of the message.  (When a group

includes every address in the system, then the multicast model
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is the broadcast model.)  The multicast model is sometimes used

in electronic mail applications (to embody mailing lists) or in

command and control applications.  As with broadcast, multicast

messages are not guaranteed to be delivered.  A more reliable

model, multi-peer, is the subject of research.

Multi-peer communication enables a process to establish a

single communications channel with multiple destinations.  In

one multi-peer model, each message sent by a designated channel

master elicits an acknowledgment from the multiple slaves.  This

model has been implemented in several experiments involving

one-way, reliable, multicast transmissions over satellite links.

The general utility of the model has yet to be proven.

Migration Model.  In object-oriented distributed systems,

knowledge must be shared between objects that may be remote from

each other.  For example, an object may need to invoke a method

in a remote object, or access data from a remote object.  Rather

than placing objects in a fixed location and then relying solely

on remote procedure calls for information sharing, some recent

research seeks to address these issues by allowing objects to

move around in a distributed system.  Several movement

strategies, or migration models, are being investigate.

One migration model replicates object class code throughout

the network and then moves specific instantiation data between

nodes when remote access is required.  This approach eliminates

movement of large code segments during run-time (the code must

be distributed after each compilation) and can ease the problem

of transformations required to move information in a

heterogeneous network.

A second migration model moves a copy of the client object

to the node where the appropriate server is operating.  This

approach is usually limited to a homogenous network.  A related

approach moves the server object to the node where the client

resides.
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No matter what migration model is advocated, the actual

movement of objects can be controlled by the system or managed

by the programmer.  Neither of these control approaches has

proven superior to the other, because moving objects around in a

system of distributed nodes, no matter how the movement is

managed, remains a research problem with many complex aspects.

What will be the performance effects of moving objects around

the network?  What happens when each object in a series of calls

is on a different node?  When can objects be replicated?  How

will the global state of all object locations be reflected?  How

will heterogeneity of computer architectures, object languages,

and run-time systems be accommodated?  We find object migration

to be an active research area.

Encapsulation Method.  When an existing service, available

in a network, must be incorporated into a distributed object

model, a method must be selected to encapsulate the existing

service inside of an object.  At present, two methods exist:  1)

a new interface to the existing service can be hand-coded in

some object-oriented language or 2) a new interface to the

existing service can be defined using an interface definition

language, a supporting compiler, and an object adapter.  The

first approach is well understood, but limited because a new

interface must be hand-coded for each new object-oriented

language that wishes to access the existing services.  The

second approach, provided the interface definition language is a

widely supported standard, allows the mapping between an

existing service and an object-oriented interface to be carried

out once.  Then, clients wishing to access an existing service

can encode there interface using the same interface definition

language.  To allow the interfaces to be supported in multiple

object-oriented languages, object adapter library routines must

be written for each object-oriented language.  Certainly,

encoding the object adapter routines once for each
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object-oriented language is more efficient than hand-coding an

interface in every object-oriented language for each existing

service that must be encapsulated.

Naming, Addressing, and Locating.  To access objects in a

distributed system, each object must have an identifier that is

unique within the scope of the system.  Further, when an

object’s identifier is known, a means must exist to locate a

specific object corresponding to the known identifier.  Often, a

distributed system is limited by the form and semantics of the

identifiers available in the system.

Objects can be identified by a name, an address, or a type

reference.  A name identifies an object independent of its

location.  An address identifies an object implicitly by

specifying where the object is located.  Normally, when an

object name is known, the name must be turned into an address.

From an address, the distributed system should be able to locate

the named object.  In most object systems, a type reference

identifies an object within a certain class.  Usually, a type

reference can be resolved into the address of a specific object

of the named type.  In practical terms, an object is requested

by name or type reference when the object is created, and an

address is returned from the creation call.  From that point on,

the object is referenced by the address. (Of course, in systems

where objects move, the address may be logical rather than

physical.)

Whether names, addresses, or type references, identifiers

exist within a geographic, or topological, scope and a temporal

scope.  Within the bounds of the system geography, an identifier

must be unique; names and addresses must map to objects on a

one-to-one basis and type references must map to classes on a

one-to-one basis.  In general, names and type references are

long-lived, while addresses live only from the time an object is

instantiated until the object is moved or destroyed.
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Within a distributed system, a means is needed to obtain

and assign identifiers.  Whenever an object or object class is

declared, a unique name or type reference, respectively, must be

obtained and assigned to the object.  Whenever an object is

instantiated, a unique address must be obtained and assigned to

the object instance.

As if obtaining and assigning names and addresses in a

distributed system were not difficult enough, once the

identifiers are assigned, some mechanism must enable the

knowledge of specific identifiers to be shared.  One such

mechanism encodes a set of known acquaintances into the

declaration of each object.  This initial set of acquaintances

permits the object to exchange messages with other objects after

instantiation.  While exchanging messages, an object may make

new acquaintances, thus widening the scope of its community.

When acquaintance lists are used, the identifiers must be

addresses.  A less restrictive mechanism relies on a mediator.

A mediator can be queried with an object name or a type

reference.  The mediator will lookup the appropriate object that

matches the query and then, providing the name or reference is

valid, return the associated address to the requester.  The

mediator might be a name resolver, a directory server, or an

object request broker.

Heterogeneity.  When a distributed system consists of

identical computers, running the same operating system, an

entire class of issues can be ignored; however, in the more

general case of heterogeneous computer systems, incompatible

data formats must be resolved, incompatible communications

protocols must be eliminated, and applications programming

interfaces (APIs) must be selected to enable application

programs to be moved between computers.  These issues can best

be resolved by establishing standards for data formats,

communications protocols, and APIs.  Fortunately, progress is
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being made toward standards in these areas.  Unfortunately, must

researchers who are investigating distributed objects ignore the

issues surrounding heterogeneity, assuming instead that all

computers on their networks are homogeneous.  Researchers within

the computer industry who are investigating distributed object

environments assume that heterogeneity is a primary concern that

must be addressed.

Replication.  Within distributed systems, replication of

information is used to decrease network congestion, to increase

responsiveness, and to increase fault tolerance.  By mirroring a

copy of system memory on a disk, a node can recover and restart

from the point of interruption after a crash.  In more critical

applications, one or more nodes can be assigned to shadow

another node so that, should the shadowed node fail, a shadowing

node can pick up the processing responsibilities immediately and

correctly.  This mode of operation is sometimes called

hot-standby.

A simple strategy to improve responsiveness allows each

node to cache information, obtained remotely, so that subsequent

calls can be processed from a local data store.  Caching

approaches raise a number of issues, such as the granularity of

information that should be passed with each remote request, the

method of determining that cached information may be invalid or

stale, and the method for updating cached information held

throughout the network.

No matter which specific replication scheme, mirroring,

shadowing, or caching, is used, the process must be managed.

Some systems enable the programmer to manage replication, while

others build replication management into the run-time system.

Security.  System security, an issue for any computer

operating system, takes on increased importance in a distributed

environment because each computer in a network is open to

attempted access by unknown users and because messages sent
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between computers may be altered or copied by unauthorized

users.  To protect distributed computing systems, two issues

must be decided:  1) the granularity of protection and trust and

 2) the specific security services provided.

In a system of distributed objects, the issue of protection

granularity is interesting.  Should access to an object be

protected or should access be restricted on a method-by-method

basis?  Should messages between objects be protected or should

protection be restricted to specified parameters in the

messages?  Should the object nature of the distributed system be

ignored, leaving security granularity at the level provided for

any system on a network?

An issue that complements the granularity of protection is

granularity of trust.  Given some decisions about what is to be

protected, what are the entities that should be authenticated,

and then trusted according to that authentication?  In

distributed systems, processes can be authenticated on behalf of

users, network nodes can be authenticated on behalf of processes

running on the node, and specific communications between nodes

or between processes might be authenticated individaully.  What

about an object-oriented distributed system?  Should each object

be authenticated, or are the usual levels of authentication in a

distributed system sufficient?

Complementing the issues of granularity is the question of

what services to offer.  Should authentication services be based

on public keys, or should a third-party authentication service

issue, in real time, private keys?  Should access controls be

provided at multiple levels, as opposed to just access okay or

access denied?  For example, for a specified, target object,

should user objects authenticated as system auditors be given

access to special methods?  If messages between objects are

protected, should protection include both integrity and

confidentiality?  Should these protections be applied to entire
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messages, to specified fields, or to programmer designated

portions of messages?  Should these protections be applied to

every message, to programmer-designated exchanges, or to system

selected transmissions?  Should audit services be provided so

that a series of object creations and method invocations can be

reconstructed later?

   

IV.  Applying Objects To Communications Architectures

We draw several implications from the foregoing survey of

approaches to, and analysis of issues surrounding, concurrent

and distributed object systems.  First, no existing model or

approach to concurrent, distributed object systems is

sufficiently advanced for operational deployment.  Further, the

breadth and complexity of the issues that must be solved before

a general model of concurrent, distributed object systems is

accepted leads us to conclude that operational deployment of

such systems will occur later, rather than sooner.  For these

reasons, we expect that conventional communications

architectures among loosely-coupled, heterogeneous computer

systems will play a growing operational role, as the number of

computers and networks deployed continues to increase.  This

reasoning leads us to consider how object-oriented techniques

might be employed to reduce the complexity, to improve the

reusability and extensibility, and to increase the performance

of convention communications architectures.

In the following sections we demonstrate how the concept of

abstract data types (ADTs) can be used to specify the services

provided by a layer within the Open Systems Interconnection

(OSI) Reference Model.  We use as our example the OSI transport

layer, the fourth of seven layers described in the OSI Reference

Model.  We take as our starting point the OSI
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Connection-oriented Transport Service Definition33, a 31-page

international standard (IS 8072) that describes the OSI

connection-oriented transport service through text, tables,

state diagrams, and event sequence diagrams.  We extracted the

semantics of IS 8072 and represented them, in only 11 pages (see

Appendix A), as an ADT using the Eiffel notation.

While the Eiffel ADT successfully captured the semantics of

IS 8072, we found the result to be impractical for use as an

application programming interface (API).  The ADT captures some

details that would normally be hidden from an application

programmer.  The ADT also is restricted to interactions between

a single transport service user and a transport service

provider.  This client-server relationship is somewhat

unrealistic because the transport service involves peer-to-peer

interactions between two users through the transport service.

Figure IV-1 illustrates this issue.

Each instance of the OSI connection-oriented transport

service is provided over a full-duplex connection that is

established between two users.  In Figure IV-1, the full-duplex

channel between two transport service users is represented by

two simplex channels, one from User A to User B and the other

from User B to User A.  IS 8072 requires that such a connection

be established by only one of the users (the connection
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initiator).  In Figure IV-1, User A would send a connect request

(CR) to User B which would arrive at User B as a connect

indication.  User B, if accepting the connection, then issues a

connect response which arrives at User A as a connect confirm.

Once the connection is established, the Users operate

independently and symmetrically with each issuing various data

requests which arrive at the other user as data indications.

The interactions can continue until either user decides to end

the connection by issuing a disconnect request, which arrives at

the other user as a disconnect indication.  The Transport

Service Provider relays the requests and responses between the

users and ensures that various service guarantees are achieved.

An ADT for the OSI transport service specifies the

interactions between a user, or client, and the transport

service provider, or server.  As can be seen in Figure IV-1, two

transport service interfaces exist, one between User A and the

provider and the other between User B and the provider.  A user

may access the transport provider in either of the two roles,

but not in both simultaneously (unless the user operates in

loopback mode, in which case the user is still acting as two

users and would have to be specially constructed).

An application programming interface (API) might be

concerned not only with interactions between the provider and

the user, but also between the local and remote user.  In fact,

the API might be interested solely in the interaction between

the two users.  The ADT given in Appendix A does not capture the

interaction between users.  For this reason, we defined a second

Eiffel description of the transport service (see Appendix B)

that is intended to provide an API.

Both the ADT and API were written in Eiffel (version 2.3)

and compiled on a UNIX system.  We then moved the compiled code

to a Microsoft Windows system and used word-processing software

to improve the appearance of the code.  In both Appendix A and
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B, we show the Eiffel keywords in bold.  Classes that we have

defined are shown in CAPITAL, BOLD, ITALICS. (Built-in Eiffel

classes are shown in BOLD CAPITAL letters.)  We assigned line

numbers to each listing so that the reader can relate the

following discussions to the appropriate statements in the

Eiffel code.

We first discuss the ADT for the OSI transport service

interface.  We then describe the API for OSI transport users.

A. An Abstract Data Type for the OSI Transport Service Interface

Our abstract data type (ADT) for the OSI transport service

interface is shown in Appendix A as the Eiffel deferred class

TS_INTERFACE (lines 1 to 285).  Each exported feature, except

expedited_allowed, corresponds to an abstract transport service

primitive defined in IS 8072.  The expedited_allowed (line 22)

feature indicates whether or not expedited data can be sent

across the transport connection. (Each transport connection can

send regular data, but the possibility also exists to send

expedited data which can leapfrog the normal flow control

associated with regular data.  Expedited data facilitates

sending of interrupts across a transport connection.)

IS 8072 defines a small (four states and eight transitions)

finite state machine (FSM) that controls the types of service

primitives that may be issued by the transport service user and

provider at any point during the life of the connection.  This

FSM is represented by the hidden feature TS_Interface (line 14)

of the class TC_STATE (lines 289 to 311).  The transport service

interface can be in one of four states (idle, outgoing

connection pending, incoming connection pending, or data

transfer ready).  The state of the interface is used in

preconditions to the service primitives to prevent the

primitives from being issued at the wrong time.
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The hidden features now (line 16) and time_sent (line 18)

are used to provide time-stamps for certain operations and to

access the current time.  (One, perhaps unrealistic, assumption

made by us is that a global clock exists and can be accessed to

provide synchronized time.)  TS_User_Invoked (line 20) provides

a value that can be inserted into the reason field of a

disconnect request when the transport service user initiates a

disconnect.  This allows user-initiated disconnects to be

distinguished from provider initiated disconnects.

IS 8072 describes the transport interface as consisting of

a full-duplex channel (usually represented as two simplex

channels running in opposite directions) between two transport

service users.  IS 8072 also specifies that certain requests

issued by a transport service user can overtake and even cause

deletion of other requests while they are still in the channel.

The rules describing how this can occur also specify that these

operations are optional and under control of the service

provider.  To allow our ADT to represent these rules, we modeled

the channel between the transport service user and provider as

six simplex channels (three for inbound objects and three for

outbound objects), as shown in lines 24, 26, and 28.  The

CHANNELs (lines 330 to 345) cd_in and cd_out contain CTL_BLOCKs

(lines 347 to 373) which include connect requests (CRs), connect

confirms (CCs), and disconnect requests (DRs).  In effect, these

are connection management messages.  The DRs can potentially

destroy normal and expedited data that is en route to transport

service users, but not yet delivered.

The CHANNELs dt_in and dt_out contain normal data, called

transport service data units (TSDUs, lines 377 to 394) sent by

and arriving for, respectively, the transport service user.  The

remaining pair of CHANNELs, ed_in and ed_out, contain expedited

data (E_TSDUs, lines 397 to 412) leaving from and arriving for

the transport service user.
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All messages crossing the transport service interface may,

and some must, contain data which we represent as a DATA class

(lines 415 to 421) consisting of a count and value

(ARRAY[CHAR]).  Each type of message we represent (CTL_BLOCK,

TSDU, E_TSDU) contains parameters in addition to DATA -- the

specific parameters, represented as features in the appropriate

class, correspond to parameters defined in IS 8072 or to

parameters needed to guarantee the service defined in IS 8072.

We will cover each parameter, as necessary, in the subsequent

discussion.

The transport service interface is initiated when a

transport service user, hereafter USER, invokes the

T_CONNECT_request feature (lines 30 to 57) to attempt to

establish a connection, via the transport service provider,

hereafter PROVIDER, to a remote user.  We will describe this

feature definition in some detail so that the reader may

understand the major points of the remaining features on his

own.

The first parameter in the T_CONNECT_request, Invoker,

(line 30) is an invention of our own.  Invoker is of class

IDENTITY (lines 313 to 327) which simply distinguishes the

service provider (isPROVIDER) from the service user (isUSER).

This is necessary because IS 8072 indicates that certain of the

service primitives (represented by us as Eiffel features in the

class TS_INTERFACE) may only be issued by the service user and

others may only be issued by the service provider.  In effect,

our ADT is an entity that is shared by a transport service user

and a service provider -- we have represented TS_INTERFACE as a

server to multiple clients, each of which is allowed to use

certain features in a controlled manner.

The remaining parameters in the T_CONNECT_request are

extracted directly from IS 8072.  We have represented the Called
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and Calling fields as an ADDRESS class (lines 455 to 459) and

the Quality_of_Service fields as a QOS class (lines 430 to 434).

Examining the preconditions for the T_CONNECT_request

(lines 37 to 42) we find that the invoker of this feature must

be the USER, that the interface must presently be idle, that the

called and calling addresses and quality of service must be

provided, and that the user data is optional, but if present

must be between 1 and 32 bytes in length.  With the exception of

the invoker identity (previously explained) all of the

preconditions represent specifications from IS 8072.

The post-conditions for the T_CONNECT_request (lines 46 to

55) specify what the feature ensures, given that the

preconditions were satisfied.  The main post-conditions

specified fall into three categories: 1) a CTL_BLOCK is placed

in cd_out, 2) the expedited option requested by the USER is

recorded in the expedited_allowed feature, and 3) the interface

state is changed to outgoing connection pending.  Regarding the

object placed into cd_out: the count of objects in the channel

is increased by one, the type of object is a CR, and the USER

provided parameters are mapped into the CR object.

The reader should be able to follow the other features

related to connection establishment.  The T_CONNECT_indication

(lines 59 to 82) is issued by the PROVIDER to signal an arriving

CR.  The preconditions require that the first object in cd_in is

the CR and that all parameters were mapped from that CR to the

feature call.  The post-conditions indicate that the CR was

removed from cd_in, that the incoming expedited option is saved,

and that the interface state is changed to incoming connection

pending.

After receiving a T_CONNECT_indication and deciding to

accept that connection, the USER issues a T_CONNECT_response

(lines 87 to 116).  The interpretation of the pre- and
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post-conditions is similar to that for a T_CONNECT_request, but

a CC object is placed in cd_out.

When the PROVIDER issues a T_CONNECT_confirm (lines 118 to

142) to a USER, the interpretation of the pre- and

post-conditions follow along the lines of that given for the

T_CONNECTION_indication.  The result of the T_CONNECT_confirm is

that the USER is in the data transfer ready state and that the

expedited option for the connection has been finally established

(this is defined in IS 8072 as a simple negotiation).

Once in the data transfer ready state, a USER may invoke

repeatedly the T_DATA_request feature (lines 144 to 162) and the

PROVIDER may invoke repeatedly the T_DATA_indication feature

(lines 164 to 185).  Each T_DATA_request requires that some

associated DATA exist.  The post-conditions ensure that the

outgoing TSDU is stamped with the time, numbered in the sequence

sent and placed in dt_out.  The time-stamp and sequence numbers

are checked in the preconditions of T_DATA_indications to verify

that the PROVIDER yielded the service specified in IS 8072

(i.e., the data will be delivered, after some finite delay, in

the order sent, without damage, without gaps, and without

duplication).  The post-conditions for the T_DATA_indication

ensure that the arriving data is removed from dt_in.

If expedited_allowed is true, then the USER may issue

T_EXPEDITED_DATA_requests (lines 187 to 208) and the PROVIDER

may issue T_EXPEDITED_DATA_indications (lines 210 to 234).  The

main outline for these features is taken from the corresponding

T_DATA_request and T_DATA_indication features, but two wrinkles

are added (because of requirements included in IS 8072).  First,

expedited data must be between 1 and 16 bytes in length.

Second, any expedited data received must be received before any

normal data sent after the expedited data.  (Frankly, we find

this definition of expedited to be less than satisfactory -- in

effect IS 8072 guarantees that expedited data won’t get treated
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any worse than normal data, but encourages the PROVIDER to push

the expedited data ahead of any normal data that is not yet

delivered.)

The final features, T_DISCONNECT_request (lines 236 to 259)

and T_DISCONNECT_indication (lines 261 to 283) deal with

connection termination.  A DISCONNECT_request, which may

optionally include data, may be issued by the USER when the

interface is in any state except idle.  If the request includes

data, the data must be between 1 and 64 bytes in length.  At the

end of the T_DISCONNECT_request, the post-conditions ensure

that:  all incoming channels (cd_in, dt_in, and ed_in) are

empty, that the interface is idle, that any objects already in

outgoing channels (cd_out, dt_out, and ed_out) might be deleted

(but they need not be because IS 8072 leaves this to the

PROVIDER’s discretion), and that the last object in cd_out is a

DR with a reason_code of TS_User_Invoked.

The T_DISCONNECT_indication can be invoked by the PROVIDER

at any time when the interface is not in the idle state.  The

T_DISCONNECT_indication ensures that the interface is idle and

that all incoming and outgoing channels are empty.

These twelve features comprise the TS_Interface ADT, an ADT

that captures the OSI Transport Service Defintion as embodied in

IS 8072.  While this ADT works well as a specification of the

transport service, the odd arrangement of two clients (the USER

and PROVIDER) communicating through one server (the ADT)

provides an unconventional application programming interface

(API).  For this reason, we specified the OSI Transport Service

Definition, again using Eiffel, in a different style that is

more conventional for programmers.  In addition, we tried to

capture the relationship between actions taken by the two

corresponding users across the transport service.  At the same

time, we dropped some of the details, such as quality of

service, expedited data negotiation, and user data in the
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connection management messages, that, although included in IS

8072, are not normally implemented.  Our attempt at an API for

the OSI transport service, included as Appendix B, is described

below.

B. An Application Programming Interface for the OSI Transport   

    Service

         

Our application programming interface (API) for the OSI

transport service is shown in Appendix B as two main classes:

TS (lines 1 to 216) encapsulates the transport service provider

and TS_USER (lines 223 to 315) encapsulates the transport

service user.  We begin our discussion with TS because this

class provides the programmer’s view of the transport service.

TS exports seven features, each corresponding with a

service offered by the provider to a user, or client.  The

parameters provided for each feature are minimal so as to ease

the programmer’s job.  The listen feature establishes that a

user is willing to wait for possible incoming connections.  The

connect feature initiates an active connection attempt by the

transport service provider on behalf of the user.  The

disconnect feature terminates the connection.  The send and

receive features transmit data and accept any incoming data,

respectively.  The send_expedited and receive_expedited are

analogous to send and receive, but operate on expedited data.

A user wishing to accept an incoming transport connection

invokes the listen operation (lines 17 to 33) with an input

parameter of class TS_USER (lines 223 to 315).  The listen

operation requires that the input user is a valid user and that

the user is disconnected, and then ensures that the user is

listening or else is connected to another user who issued a

connect that arrived while the listening user was being

registered.
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To actively establish a connection, a user invokes the

connect operation (lines 35 to 57), specifying the local and

remote users;  both must be valid.  The local user must be

disconnected and the remote user must either be listening,

disconnected, or trying. (Our API allows for two users

attempting active connections to be resolved into a single

connection.  IS 8072 forces such a situation to resolve into two

connections; thus, our API is more flexible than our ADT on this

point.)  The connect operation ensures that either the local and

remote users are connected or that the local user is

disconnected.

The disconnect operation (lines 59 to 79) allows the user

to terminate an existing connection.  The user must be valid and

connected.  The remote user must either be connected or be

disconnecting.  (Here again, our API is more flexible than our

ADT.  IS 8072 requires that data be neither sent nor received by

a user after a disconnect request is issued, but our API, while

preventing a user from sending data after issuing a disconnect,

allows a user to continue receiving data after issuing a

disconnect.  This choice was made with the view that the same

API might be used over multiple transport services each of which

operates with slightly different rules.)

The send operation (lines 81 to 107) requires a user and

data (of class TSDU, lines 318 to 342).  The user must be valid

and connected and the data must exist.  The send operation will

then ensure that the order in which the data is sent will match

the order in which it is received, that the data is received

after some finite delay, and that the content received matches

the content sent; or else the user is disconnected.  These

assurances match the service guarantees of IS 8072 and can be

expressed in compilable Eiffel; however, these assurances cannot

be checked in reality because the send operation is not required

to wait until the data is received but can continue, including
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sending additional data.  The transport service forms a pipeline

of data that will eventually guarantee an outcome, but will not

provide an outcome at the time of the call.  Thus, the ensure

clauses for the send and send_expedited operations should

probably be expressed as comments.

The receive operation (lines 109 to 133) requires a user

and returns a TSDU.  The user must be valid, and connected or

disconnecting (this situation was described earlier).  The

operation ensures that the resulting TSDU is void if no data is

waiting to be received.  If data is waiting, the returned TSDU

is guaranteed to have been sent earlier, to be received in the

order sent, and to have the same content that was sent.  Here,

with some small changes to the transport protocol, the first two

assurances can actually be checked, but the latter assurance

cannot practically be evaluated.  (Again, part of the ensure

portion of the receive and receive_expedited might best be

handled as Eiffel comments.)  If the expectations of the

transport service would be violated by a receive operation, then

the user will be disconnected.  The receive operation is

non-blocking, that is, whether data is ready to be received or

not, control will be returned immediately to the caller.

The operation of the send_expedited (lines 136 to 166) and

receive_expedited (lines 168 to 195) features mirror those of

the send and receive features, respectively.  One additional

wrinkle deals with the ordering of the expedited data relative

to normal data.  Any expedited data sent is guaranteed to be

received prior to any normal data that is sent after the

expedited.  Note also that the expedited data sent and received

is represented by a class E_TSDU (lines 344 to 360).

The second major class, TS_USER (lines 223 to 315),

comprising the API represents the transport service user.  In

our description we included a number of details, as will be

explained, and omitted others, such as addresses, quality of
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service, and expedited flags.  The omitted details were dealt

with under the ADT and, thus, the reader should be able to

supply them.  Rather than passing the detailed parameters

individually, as specified in IS 8072, we pass a reference to

the user object that encapsulates the detail parameters

associated with the user.

Each user may be in one of five states; therefore, we

export five features querying the state of the TS_USER.  We also

provide features indicating whether data has been sent and

received, as well as the last sequence number of each TSDU sent

and received.  The wakeup operation allows the transport service

provider to alert the user that some data or event has arrived

that may be of interest to the user.  The wakeup operation,

then, is a suffered operation that must be implemented by the

transport user in order to use the transport service.  The only

parameter of the wakeup operation is a reference to a local

image of the remote user with whom the local user is

communicating.

Two hidden operations are provided to allow the user to

update the sequence numbers of the TSDUs sent and received.  The

Zero feature permits the invariant to compile.  The invariant

for TS_USER is straightforward:  sequence numbers must be zero

or greater, if a TSDU has been sent or received, then the

corresponding sequence number must be positive, and the TS_USER

must be in one of its valid state.

C. Evaluation

The API we described is simpler, yet more flexible, than

our ADT for the equivalent transport service, but also less

precise.  Since most of the post-conditions cannot really be

evaluated at run-time, the API would probably require commenting

out the ensure clauses for several of the operations.  We
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imagine that additional thought might lead to a better

expression of the API, or, perhaps, the ADT can be adapted to

become an API.

As a vehicle for specifying the OSI Transport Service,

ADTs, particularly as represented by Eiffel, worked well.

Thrity-one pages of text, pictures, tables, and state diagrams

were condensed to eleven pages of Eiffel.  Some of the behavior

that is described as optional in IS 8072 could only be hinted at

indirectly in the ADT.  For example, the ability of some objects

to overtake other objects at the discretion of the service

provider could not be readily expressed in the ADT.  In

situations where ambiguity must be introduced into a

specification, natural language is superior to the mathematical

rigor of ADTs.  Even so, the ADT we created for the transport

service defines, almost completely, a fairly complex object.

As for using Eiffel to define an API to a distributed,

peer-to-peer service, our success is less clear.  We find that

the preconditions are useful to constrain calls on the various

operations; however, we believe that the post-conditions, for

the most part, cannot be realized in an actual run-time

implementation and, therefore, must be included in the API code

merely as comments to describe what the programmer can expect.

Of course, this may not be viewed as a limitation by Eiffel

adherents because the recommended compile-time options under

normal execution do not include the evaluation of

post-conditions.

We found our experiment with ADTs and Eiffel to be

stimulating.  More thought will be required to determine if

object-oriented techniques can be used to improve the

specification of communications architectures, protocols, and

services.  Our early test showed some promise, as well as the

need for additional learning on our part.  
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V. Conclusions

We have considered three trends in information technology:

1) an increasing number of cheap, powerful computing devices,   

 2) a growing web tying these computing devices together, either

into loosely-coupled local and wide area networks or into

closely-coupled, massively parallel computational engines, and  

 3) a movement toward object-oriented software systems.

Combined, these trends seem to foretell an era of distributed,

and thus concurrent, systems of objects, objects spread

throughout a network of computers: communicating, moving,

locating one another, fending off unauthorized accesses,

cooperating to satisfy application requirements, synchronizing

concurrent accesses, and handling exceptions that occur

remotely.  Our survey of approaches to concurrent and

distributed object systems convinces us that this impending era

has not yet arrived.  No distributed object system is deployed

today.

Further, our assessment of the issues facing any

deployable, distributed object system convinces us that an era

of distributed object systems will come later, rather than

sooner.  No consensus exists as to the cooperation model to be

used among distributed object systems.  Methods for naming,

addressing, locating, and moving objects in a global network

have yet to be established.  Most present research on

distributed object systems ignores the very real issues of

heterogeneity and security.  No widely held agreement exists in

the industry regarding the basic assumptions that should be made

about the communications networks underlying distributed

systems.  These issues will retard progress toward what could

ultimately become a future of distributed computing based on

objects.  In the meantime, current methods for communication
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among heterogeneous, distributed computers will continue to

provide an important basis for cooperative processing; and,

perhaps, object-oriented software techniques can improve our

ability to specify, produce, use, and maintain the

communications architectures, services, and protocols necessary

for loosely-coupled, distributed computing.

In our paper, we presented a small experiment in applying

object-oriented techniques to the specification of communication

services.  Specifically, we designed an abstract data type (ADT)

for the Open Systems Interconnection (OSI) connection-oriented

transport service (as defined in IS 8072).  We then specified

the ADT in Eiffel, an object-oriented programming language.  Our

experiment showed that such specifications are possible, though

we identified some areas where natural language has advantages.

Oddly enough, the IS 8072 definition included, purposefully,

some ambiguous statements - ambiguity is anathema to ADTs.

One goal of object-oriented programming with ADTs is to

specify the semantics and syntax of operations that a programmer

can rely upon when using the services of an ADT.  Here, we

judged our transport service ADT too restrictive, and, so, we

constructed a separate application programming interface (API)

for the transport service.  Our API exhibited increased

flexibility when compared with our ADT, but the post-conditions

in our API are probably impractical to evaluate at run-time.

Perhaps, with more time and thought, some adaptation of our ADT

could become a suitable API, but we are not convinced of that

fact.

Our experiment with Eiffel and the OSI transport service

encourages us that object-oriented techniques might improve our

ability to specify, construct, use, and adapt communications

architectures and protocols;  but more thought and work is

necessary before we can make such claims.  We are convinced that

ADTs can usefully represent unambiguous aspects of an OSI
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service interface; however, we are unconvinced that ADTs (at

least as represented in Eiffel) can adequately express the

semantics of a peer-to-peer service that extends across two

service interfaces. 
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Appendix A.  Eiffel Abstract Specification of IS 8072: The Connection-oriented Transport 
          Sevice Definition

deferred class TS_INTERFACE

-- Transport Service Definition.

export T_CONNECT_request, T_CONNECT_indication,
T_CONNECT_response, T_CONNECT_confirm,
T_DATA_request, T_DATA_indication,
T_EXPEDITED_DATA_request, 
T_EXPEDITED_DATA_indication,
T_DISCONNECT_request, T_DISCONNECT_indication,
TS_Interface, expedited_allowed

feature

TS_Interface : TC_STATE;

now : TIME;

time_sent : TIME;

TS_User_Invoked : DIS_REASON;

expedited_allowed : BOOLEAN;

cd_in, cd_out : CHANNEL[CTL_BLOCK[DATA]];

dt_in, dt_out : CHANNEL[TSDU[DATA]];

ed_in, ed_out : CHANNEL[E_TSDU[DATA]];

T_CONNECT_request( Invoker : IDENTITY,
Called, Calling : ADDRESS,
Expedited_Option : BOOLEAN,
Quality_of_Service : QOS,
TS_User_Data : DATA

 ) is
require

Invoker.isUSER;
TS_Interface.isIdle;
not Called.Void and not Calling.Void;
not Quality_of_Service.Void;
TS_User_Data.Void or else
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(TS_User_Data.count > 0 and 
TS_User_Data.count <=32);

deferred

ensure
cd_out.count = old cd_out.count + 1;
cd_out.last.isCR;
cd_out.last.address1 = Called;
cd_out.last.address2 = Calling;
cd_out.last.exp_opt = Expedited_Option;
expedited_allowed = Expedited_Option;
cd_out.last.q_o_s = Quality_of_Service;
cd_out.last.user_data = TS_User_Data;

TS_Interface.isOutgoing_Connection_Pending;

end; -- T_CONNECT.request

T_CONNECT_indication( Invoker : IDENTITY,
Called, Calling : ADDRESS,
Expedited_Option : BOOLEAN,
Quality_of_Service : QOS,
TS_User_Data : DATA
) is

require
Invoker.isPROVIDER;
TS_Interface.isIdle;
cd_in.first.isCR;
Called = cd_in.first.address1;
Calling = cd_in.first.address2;
Expedited_Option = cd_in.first.exp_opt;
Quality_of_Service = cd_in.first.q_o_s;
TS_User_Data = cd_in.first.user_data;

deferred

ensure
cd_in.count = old cd_in.count - 1;
cd_in.empty or else

old cd_in.first /= cd_in.first;
expedited_allowed = Expedited_Option;
TS_Interface.isIncoming_Connection_Pending;

end; -- T_CONNECT.indication
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T_CONNECT_response( Invoker : IDENTITY,
Responder : ADDRESS,
Expedited_Option : BOOLEAN,
Quality_of_Service : QOS,
TS_User_Data : DATA

  ) is

require
Invoker.isUSER;

TS_Interface.isIncoming_Connection_Pending;
not Responder.Void;
Expedited_Option = false or else 
Expedited_Option = 

expedited_allowed;
not Quality_of_Service.Void;
TS_User_Data.Void or else
(TS_User_Data.count > 0 and

TS_User_Data.count <=32);

deferred

ensure
cd_out.count = old cd_out.count + 1;
cd_out.last.isCC;
cd_out.last.address1 = Responder;
cd_out.last.exp_opt = Expedited_Option;
expedited_allowed = Expedited_Option;
cd_out.last.q_o_s = Quality_of_Service;
cd_out.last.user_data = TS_User_Data;
TS_Interface.isData_Transfer_Ready;

end; -- T_CONNECT.response

T_CONNECT_confirm( Invoker : IDENTITY,
Responder : ADDRESS,
Expedited_Option : BOOLEAN,
Quality_of_Service : QOS,
TS_User_DATA : DATA

 ) is
require

Invoker.isPROVIDER;
TS_Interface.isOutgoing_Connection_Pending;
cd_in.first.isCC;
Responder = cd_in.first.address1;
Expedited_Option = cd_in.first.exp_opt;
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Quality_of_Service = cd_in.first.q_o_s;
TS_User_Data = cd_in.first.user_data;

deferred

ensure
cd_in.count = old cd_in.count - 1;
cd_in.empty or else

old cd_in.first /= cd_in.first;
expedited_allowed = Expedited_Option;
TS_Interface.isData_Transfer_Ready;

end; -- T_CONNECT.confirm

T_DATA_request( Invoker : IDENTITY,
TS_User_Data : DATA

     ) is
require

Invoker.isUSER;
TS_Interface.isData_Transfer_Ready;
not TS_User_Data.Void;
TS_User_Data.count > 0;

deferred

ensure
TS_Interface.isData_Transfer_Ready;
dt_out.seq = old dt_out.seq + 1;
dt_out.last.content = TS_User_Data;
dt_out.last.order = dt_out.seq;
dt_out.last.time_stamp = time_sent;

end; -- T_DATA.request

T_DATA_indication( Invoker : IDENTITY,
TS_User_Data : DATA

         ) is
require

Invoker.isPROVIDER;
TS_Interface.isData_Transfer_Ready;
not TS_User_Data.Void;
TS_User_Data.count > 0;
dt_in.first.order = dt_in.seq + 1;
dt_in.first.content = TS_User_Data;
dt_in.first.time_stamp < now;

deferred
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ensure
TS_Interface.isData_Transfer_Ready;
dt_in.seq = old dt_in.seq + 1;
dt_in.count = old dt_in.count - 1;
dt_in.empty or else

dt_in.first /= old dt_in.first;

end; -- T_DATA.indication

T_EXPEDITED_DATA_request( Invoker : IDENTITY,
TS_User_Data : DATA

     ) is
require

expedited_allowed;
Invoker.isUSER;
TS_Interface.isData_Transfer_Ready;
not TS_User_Data.Void;
TS_User_Data.count > 0;
TS_User_Data.count <= 16;

deferred

ensure
TS_Interface.isData_Transfer_Ready;
ed_out.seq = old ed_out.seq + 1;
ed_out.last.content = TS_User_Data;
ed_out.last.order = ed_out.seq;
ed_out.last.time_stamp = time_sent;
ed_out.last.before_dt = dt_out.seq + 1;

end; -- T_EXPEDITED_DATA.request

T_EXPEDITED_DATA_indication( Invoker : IDENTITY,
TS_User_Data : DATA

        ) is
require

expedited_allowed;
Invoker.isPROVIDER;
TS_Interface.isData_Transfer_Ready;
not TS_User_Data.Void;
TS_User_Data.count > 0;
TS_User_Data.count <= 16;
ed_in.first.order = ed_in.seq + 1;
ed_in.first.content = TS_User_Data;
ed_in.first.before_dt > dt_in.seq;
ed_in.first.time_stamp < now;
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deferred

ensure
TS_Interface.isData_Transfer_Ready;
ed_in.seq = old ed_in.seq + 1;
ed_in.count = old ed_in.count - 1;
ed_in.empty or else

ed_in.first /= old ed_in.first;

end; -- T_EXPEDITED_DATA.indication

T_DISCONNECT_request( Invoker : IDENTITY,
TS_User_Data : DATA

           ) is
require

Invoker.isUSER;
not TS_Interface.isIdle;
TS_User_Data.Void or else
(TS_User_Data.count > 0 and

TS_User_Data.count <= 64);

deferred

ensure
cd_in.empty;
dt_in.empty;
ed_in.empty;
TS_Interface.isIdle;
dt_out.count <= old dt_out.count;
ed_out.count <= old ed_out.count;
cd_out.count <= old cd_out.count + 1;
cd_out.last.isDR;
cd_out.last.user_data = TS_User_Data;
cd_out.last.reason_code = TS_User_Invoked;

end; -- T_DISCONNECT.request

T_DISCONNECT_indication( Invoker : IDENTITY,
Reason : DIS_REASON,
TS_User_Data : DATA

          ) is
require

not TS_Interface.isIdle;
Invoker.isPROVIDER;
cd_in.first.isDR;
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TS_User_Data = cd_in.first.user_data;
Reason = cd_in.first.reason_code;

deferred

ensure
TS_Interface.isIdle;
cd_in.empty;
dt_in.empty;
ed_in.empty;
cd_out.empty;
dt_out.empty;
ed_out.empty;

end; -- T_DISCONNECT.indication

 end; -- class TS_INTERFACE

 deferred class TC_STATE

export isIdle,
isOutgoing_Connection_Pending,
isIncoming_Connection_Pending,
isData_Transfer_Ready

feature

isIdle :BOOLEAN is deferred end;

isOutgoing_Connection_Pending :BOOLEAN is deferred end;

isIncoming_Connection_Pending :BOOLEAN is deferred end;

isData_Transfer_Ready :BOOLEAN is deferred end;

invariant

isIdle or else isOutgoing_Connection_Pending 
 or else isIncoming_Connection_Pending or else

isData_Transfer_Ready;

 end; -- class TC_STATE 

 deferred class IDENTITY

 export isUSER, isPROVIDER
79



 feature

isUSER :BOOLEAN is deferred end;

isPROVIDER :BOOLEAN is deferred end;

 invariant

isUSER or else isPROVIDER;

 end; --IDENTITY 

 deferred class CHANNEL[T]

 export first, last, count, empty, seq

 inherit TWO_WAY_LIST[T];

 feature

seq : SEQ_NUM;

Zero : SEQ_NUM is deferred end;

i nvariant
seq >= Zero;

 end; --class CHANNEL 

 deferred class CTL_BLOCK[T]

 -- A Control Block that can carry a transport connect
request, connect
 -- confirm, or disconnect request.

 export address1, address2, q_o_s, exp_opt, reason_code, 
isCR, isCC, isDR, user_data

 inherit BI_LINKABLE[T] rename item as user_data;

 feature

 isCR : BOOLEAN is deferred end;

isCC : BOOLEAN is deferred end;
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isDR : BOOLEAN is deferred end;

address1, address2 : ADDRESS;

q_o_s : QOS;

exp_opt : BOOLEAN;

reason_code : DIS_REASON;

 end; -- class CTL_BLOCK 

 class TSDU[T]

 -- A Transport Service Data Unit (TSDU), the unit of data
that a transport
 --  service user (TS_USER) sents on and receives from a
transport connection
- -  This is the unit that the service is responsible for
ensuring the integrity
 --  of.

 export order, time_stamp, content

 inherit BI_LINKABLE[T] rename item as content;

 feature

 order : SEQ_NUM;

 time_stamp : TIME;

 end; -- class TSDU 

 class E_TSDU[T]

- -  This is an expedited transport service data unit, the
unit of expedited
 --   data that the user submits to and receives from a
transport connection.
 --   This is the unit of expedited data that the transport
service is 
 --   accountable for.
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 export order, time_stamp, content, before_dt

 inherit TSDU[T];

 feature

before_dt : SEQ_NUM;

 end; -- class E_TSDU

 class DATA

 export count

 inherit ARRAY[CHAR];

 end; -- class DATA

 class DIS_REASON

 inherit INT;

 end; -- DIS_REASON 
  
 class QOS

 inherit INT;

 end; -- class QOS 

 class SEQ_NUM

 export infix "+", infix ">=", infix ">" 

i nherit INT;

 end; -- class SEQUENCE_NUMBER 

 class TIME

 export infix ">", infix "<", infix "<=", infix ">="

 inherit INT;
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 end; -- class TIME

 lass ADDRESS

 inherit STRING;

 end; -- class ADDRESS 
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Appendix B.  Eiffel Abstract Specification of an Application Programming Interface to the     
Open Systems Interconnection (OSI) Transport Service

deferred class TS
   

-- TRANSPORT_SERVICE
-- An Eiffel representation of IS0 8072 (the

international standard 
--  connection-oriented transport service

specification).  The
--  description given in here omits some of the

details of IS0 8072.
--  The purpose of this specification is to describe

the semantics
--  of the transport service interface in a form that

an application
--  programmer can invoke the services and comprehend

the semantics of
--  the service calls.

export listen, connect, disconnect, send, receive, 
send_expedited, receive_expedited

feature

listen(user : TS_USER) is

--  A user invokes this feature to await a connection
--request from another transport service user.

require

valid(user);
user.isDisconnected;

deferred

ensure
user.isListening
or else
(user.isConnected and 

other_user(user).isConnected);
end; -- listen

connect(user : TS_USER, remote_user : TS_USER) is
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--  A transport service user invokes this feature to 
attempt

--  to actively connect to another transport service 
user.

require
valid(user);
user.isDisconnected;
valid(remote_user);
remote_user.isListening

 or else
 remote_user.isDisconnected

or else
remote_user.isTrying;

deferred

ensure
(user.isConnected and 
remote_user.isConnected)

 or else
user.isDisconnected;

end; -- connect

disconnect(user : TS_USER) is

--  A transport service user invokes this feature when
the

--  user no longer wishes to send data on the
transport

--  connection.

require
valid(user);
user.isConnected;
other_user(user).isConnected

 or else
other_user(user).isDisconnecting;

deferred

ensure
(user.isDisconnected and 
other_user(user).isDisconnected)

or else
user.isDisconnecting;
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end; -- disconnect

send(user : TS_USER,tsdu : TSDU) is

-- The transport service user invokes this feature to 
cause

-- a transport service data unit to be sent to a 
remote user

-- on the transport connection

require
valid(user);
not tsdu.Void;
tsdu.content_sent.count > 0;
user.isConnected;

deferred

ensure
((tsdu.order_sent =

  receive(other_user(user)).order_received)
and

 (tsdu.time_sent <
  receive(other_user(user)).time_received)

and
 (tsdu.content_sent =

  receive(other_user(user)).content_received))
or else

user.isDisconnected;

end; -- send

receive(user : TS_USER) : TSDU is

-- A transport service user invokes this function to 
receive

-- a transport service data unit from a remote user 
across a

-- transport connection.  If no transport service data
units

-- are ready to receive, then the feature returns 
Void.

require
valid(user);
user.isConnected or else user.isDisconnecting;

deferred
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ensure
Result.Void

or else
(Result.time_received > Result.time_sent

and
 Result.order_received = Result.order_sent

and
 Result.content_received = 

Result.content_sent)
or else

user.isDisconnected;

end; -- receive

send_expedited(user : TS_USER, etsdu : E_TSDU) is

--  A transport service user invokes this feature to 
send an expedited

--   data unit across the transport connection.

require
valid(user);
not etsdu.Void;
etsdu.content_sent.count > 0;
etsdu.content_sent.count <= 16;
user.isConnected;

deferred

ensure
((etsdu.order_sent =
 

receive_expedited(other_user(user)).order_received)
and

(etsdu.time_sent <
 

receive_expedited(other_user(user)).time_received)
and

(etsdu.content_sent =
 

receive_expedited(other_user(user)).content_received)
and

(user.tsdu_sent implies 
 (etsdu.before_tsdu =

   user.last_tsdu_sent + 1))) 
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or else
user.isDisconnected;

end; -- send_expedited

receive_expedited(user : TS_USER) : E_TSDU is

-- A transport service user invokes this feature to 
receive an expedited

--  data unit.  If no expedited data unit is 
available, then Void is

--  returned;

require
valid(user);
user.isConnected

or else
user.isDisconnecting;

deferred
ensure

Result.Void
or else

(Result.time_received > Result.time_sent
and

 Result.order_received = Result.order_sent
and

 Result.content_received = 
Result.content_sent
and

(user.tsdu_received implies
 Result.before_tsdu > 

user.last_tsdu_received))
or else

user.isDisconnected;

end; -- receive_expedited

valid(user : TS_USER) : BOOLEAN is

deferred

end; -- valid

other_user(user : TS_USER) : TS_USER is

require
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valid(user);

deferred

ensure
Result /= user;
valid(Result);

end; -- other_user

 end; -- class TRANSPORT_SERVICE

 deferred class TS_USER

--  This represents a user of the IS 8072
connection-oriented

--   transport service.

export isConnected, isListening, isDisconnecting, 
isDisconnected,isTrying, last_tsdu_received, 
last_tsdu_sent, tsdu_sent, tsdu_received, wakeup

feature

isTrying : BOOLEAN is
deferred
end; -- isTrying

isConnected : BOOLEAN is
deferred
end; -- isConnected

isListening : BOOLEAN is
deferred
end; -- isListening

isDisconnecting : BOOLEAN is
deferred
end; -- isDisconnecting

isDisconnected : BOOLEAN is
deferred
end; -- isDisconnected

last_tsdu_received : SEQ_NUM;

last_tsdu_sent : SEQ_NUM;
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tsdu_sent : BOOLEAN is
deferred
end; -- tsdu_sent

tsdu_received : BOOLEAN is
deferred
end; -- tsdu_received

wakeup(remote_user : TS_USER) is

-- This feature is user by the transport service 
provider to

--   indicate to the transport service user that some 
event

--   has occurred that may require the transport 
user’s attention

--   This means: a remote user is trying to connect or
else

--   some data has arrived, or else some expedited 
data has arrived.

deferred
end; -- wakeup

update_tsdu_sent is
deferred

ensure
tsdu_sent = true;
last_tsdu_sent = old last_tsdu_sent + 1;

end; -- update_tsdu_sent

update_tsdu_received is
deferred
ensure
tsdu_received = true;
last_tsdu_received = old last_tsdu_received + 1;

end; -- update_tsdu_received

Zero : SEQ_NUM is
deferred
end;
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invariant

last_tsdu_sent >= Zero;
last_tsdu_received >= Zero;
tsdu_sent implies (last_tsdu_sent > Zero);
tsdu_received implies (last_tsdu_received > Zero);
isDisconnected

or else
isListening

or else
isTrying

or else
isConnected

or else
isDisconnecting;

end; -- class TS_USER

 class TSDU

-- A Transport Service Data Unit (TSDU), the unit of
data that a transport

--  service user (TS_USER) sents on and receives from
a transport connection

.--  This is the unit that the service is responsible
for ensuring the integrity

--  of.

export order_sent, order_received, time_sent, 
time_received, content_sent, content_received 

feature

order_sent : SEQ_NUM;

order_received : SEQ_NUM;

time_sent : TIME;

time_received : TIME;

content_sent : DATA;

content_received : DATA;

 end; -- class TSDU
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  class E_TSDU

--  This is an expedited transport service data unit, the unit of expedited
--   data that the user submits to and receives from a transport connection.
--   This is the unit of expedited data that the transport service is

 --   accountable for.

export order_sent, order_received, time_sent, time_received, 
content_sent, content_received, before_tsdu

inheritTSDU;

feature

before_tsdu : SEQ_NUM;

 end; -- class E_TSDU

 class DATA

export count

inherit ARRAY[CHAR];
    
 end; -- class DATA

 class SEQ_NUM

export infix "+", infix ">=", infix ">"
 

inherit INT;

 end; -- class SEQUENCE_NUMBER
 
 class TIME

export infix ">", infix "<", infix "<=", infix ">="

inheritINT;

 end; -- class TIME
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